结合ollama gemma2:2b大模型来实现数据分析系统的智能交互

本文主要是介绍结合ollama gemma2:2b大模型来实现数据分析系统的智能交互,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在最近的人员风险行为分析系统开发过程中,需要解决一个问题:在缺乏GPU资源的情况下,如何提升智能交互能力。​我们探索并研究了集成gemma2:2b模型的可行性,这一举措旨在在有限的硬件条件下,为我们的系统注入更高级别的智能性,从而增强用户体验并提高数据分析效率。
具体可分为如下几个步骤:

  1. 定义用户可能提出的问题类型
  2. 结合大模型设计接口,以便根据用户的问题提取实体信息
  3. 实现数据检索机制以提取相关信息返回给用户

如下,是系统页面原型,
在这里插入图片描述
交互时,用户输入自己的问题,我们无法预测用户输入什么,但是我们可以定义系统能处理什么类型的问题。在本功能里,我们定义如下系统可以交互的问题分类:

  1. 人员的基本信息
  2. 联网设备(应用系统、数据库资产、终端设备资产、服务器资产等)的基本信息
  3. 人员日常操作风险(从告警列表里读取)
  4. 和知识图谱的交互线索,例如共用终端风险线索(从知识图谱里查到用户使用两个以上终端设备的图数据)

接着我们要用大模型把用户问题里的实体抽取出来,这就需要我们定义prompt,并利用提示词让大模型帮我们把用户的问题解读成我们可继续执行的实体行为。代码如下:

@app.route('/chat', methods=['POST'])
def chat():data = request.jsonprompt = data.get('prompt', '')payload = {"model": "gemma2:2b","prompt": BASE_PROMPT + prompt}response = requests.post(f"{OLLAMA_API_BASE}/generate", json=payload)response.headers['Content-Type'] = 'application/json; charset=utf-8'if response.status_code == 200:try:result = response.content.decode('utf-8')# 尝试解析每一行responses = [json.loads(line) for line in result.strip().split('\n')]# 提取所有响应中的 'response' 字段combined_response = ''.join(r.get('response', '') for r in responses if 'response' in r)# 使用正则表达式提取括号内的内容pattern = r'\((.*?)\)'matches = re.findall(pattern, combined_response)result_list = []for match in matches:# 使用defaultdict来处理重复键result_dict = defaultdict(list)# 使用逗号分割键值对,允许逗号前后有空格pairs = re.split(r'\s*,\s*', match)# 遍历每个键值对for pair in pairs:# 使用冒号分割键和值,允许冒号前后有空格key_value = re.split(r'\s*:\s*', pair, maxsplit=1)if len(key_value) == 2:key, value = key_value# 去除键和值两端的空格,并将值添加到对应的键的列表中result_dict[key.strip()].append(value.strip())# 将defaultdict转换为普通字典,对于只有一个值的键,直接使用该值而不是列表final_dict = {k: v[0] if len(v) == 1 else v for k, v in result_dict.items()}result_list.append(final_dict)return jsonify({"response": result_list})except json.JSONDecodeError as e:return jsonify({"error": f"Failed to parse JSON response: {str(e)}"}), 500else:return jsonify({"error": "Failed to get response from Ollama"}), 500

代码里的关键部分是BASE_PROMPT,我找了GPT帮我润色,如下,感觉可以写的更好一些。

BASE_PROMPT = """您的任务是仔细分析用户提供的文本,并从中提取关键实体信息。请特别关注以下四类实体:1. 用户相关信息:- 姓名- 身份证号码- 所在公司- 其他相关的个人识别信息2. 设备相关信息:- IP地址- MAC地址- 操作系统- 机器名称- 其他可识别的设备特征3. 事件相关信息:- 网络事件- 风险事件- 其他值得注意的事件4. 时间相关信息:- 时间段- 开始时间- 结束时间- 其他时间请仔细阅读文本,识别并提取上述实体信息。将提取的信息以(key:value)的格式整理,多个实体之间用逗号分隔。key只能从IP、姓名、身份证、电话号码、操作系统、事件、时间这几个词里选择。例如:(姓名: 张三, 身份证: 310123199001011234, IP: 192.168.1.100, 操作系统: Windows 10, 事件: 异常登录, 时间: 前天)如果某类实体在文本中未提及,则无需包含在结果中。请确保提取的信息准确且与原文相符。如果文本中包含其他重要的实体信息,也请一并提取。请现在开始分析下面用户提供的文本,并按上述格式返回提取的实体信息:"""

可以看看测试结果如下,
在这里插入图片描述
这样我们就可以根据response进行进一步的拆解,按姓名、按事件、按时间来整理数据并最终返回给用户。

这篇关于结合ollama gemma2:2b大模型来实现数据分析系统的智能交互的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119119

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了