TensorFlow图变量tf.Variable的用法解析

2024-08-29 10:48

本文主要是介绍TensorFlow图变量tf.Variable的用法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TensorFlow中的图变量,跟我们平时所接触的一般变量在用法上有很大的差异。尤其对于那些初次接触此类深度学习库的编程人员来说,会显得十分难上手。

本文将按照如下篇幅深入剖析tf.Variable这个核心概念:

图变量的初始化方法
两种定义图变量的方法
scope如何划分命名空间
图变量的复用
图变量的种类


1.图变量的初始化方法
对于一般的Python代码,变量的初始化就是变量的定义,向下面这样:

In [1]: x = 3
In [2]: y = 3 * 5
In [3]: y
Out[3]: 15

如果我们模仿上面的写法来进行TensorFlow编程,就会出现下面的”怪现象”:

In [1]: import tensorflow as tf
In [2]: x = tf.Variable(3, name='x')
In [3]: y = x * 5
In [4]: print(y)
Tensor("mul:0", shape=(), dtype=int32)

y的值并不是我们预想中的15,而是一个莫名其妙的输出——”

In [1]: import tensorflow as tf
In [2]: x = tf.Variable(3, name='x')
In [3]: y = x * 5
In [4]: sess = tf.InteractiveSession()
In [5]: sess.run(tf.global_variables_initializer())
In [6]: sess.run(y)
Out[6]: 15

在TensorFlow的世界里,变量的定义和初始化是分开的,所有关于图变量的赋值和计算都要通过tf.Session的run来进行。想要将所有图变量进行集体初始化时应该使用tf.global_variables_initializer。

2.两种定义图变量的方法
tf.Variable
tf.Variable.init(initial_value, trainable=True, collections=None, validate_shape=True, name=None)

参数名称    参数类型    含义
initial_value    所有可以转换为Tensor的类型    变量的初始值
trainable    bool    如果为True,会把它加入到GraphKeys.TRAINABLE_VARIABLES,才能对它使用Optimizer
collections    list    指定该图变量的类型、默认为[GraphKeys.GLOBAL_VARIABLES]
validate_shape    bool    如果为False,则不进行类型和维度检查
name    string    变量的名称,如果没有指定则系统会自动分配一个唯一的值
虽然有一堆参数,但只有第一个参数initial_value是必需的,用法如下(assign函数用于给图变量赋值):

In [1]: import tensorflow as tf
In [2]: v = tf.Variable(3, name='v')
In [3]: v2 = v.assign(5)
In [4]: sess = tf.InteractiveSession()
In [5]: sess.run(v.initializer)
In [6]: sess.run(v)
Out[6]: 3
In [7]: sess.run(v2)
Out[7]: 5


tf.get_variable
tf.get_variable跟tf.Variable都可以用来定义图变量,但是前者的必需参数(即第一个参数)并不是图变量的初始值,而是图变量的名称。

tf.Variable的用法要更丰富一点,当指定名称的图变量已经存在时表示获取它,当指定名称的图变量不存在时表示定义它,用法如下:

In [1]: import tensorflow as tf
In [2]: init = tf.constant_initializer([5])
In [3]: x = tf.get_variable('x', shape=[1], initializer=init)
In [4]: sess = tf.InteractiveSession()
In [5]: sess.run(x.initializer)
In [6]: sess.run(x)
Out[6]: array([ 5.], dtype=float32)

3.scope如何划分命名空间
一个深度学习模型的参数变量往往是成千上万的,不加上命名空间加以分组整理,将会成为可怕的灾难。TensorFlow的命名空间分为两种,tf.variable_scope和tf.name_scope。

下面示范使用tf.variable_scope把图变量划分为4组:

for i in range(4):
    with tf.variable_scope('scope-{}'.format(i)):
        for j in range(25):
             v = tf.Variable(1, name=str(j))
可视化输出的结果如下:

下面让我们来分析tf.variable_scope和tf.name_scope的区别:

tf.variable_scope
当使用tf.get_variable定义变量时,如果出现同名的情况将会引起报错

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.get_variable('var', [1])
   ...:     v2 = tf.get_variable('var', [1])
ValueError: Variable scope/var already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:

而对于tf.Variable来说,却可以定义“同名”变量

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.Variable(1, name='var')
   ...:     v2 = tf.Variable(2, name='var')
   ...:
In [3]: v1.name, v2.name
Out[3]: ('scope/var:0', 'scope/var_1:0')

但是把这些图变量的name属性打印出来,就可以发现它们的名称并不是一样的。

如果想使用tf.get_variable来定义另一个同名图变量,可以考虑加入新一层scope,比如:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope1'):
   ...:     v1 = tf.get_variable('var', shape=[1])
   ...:     with tf.variable_scope('scope2'):
   ...:         v2 = tf.get_variable('var', shape=[1])
   ...:
In [3]: v1.name, v2.name
Out[3]: ('scope1/var:0', 'scope1/scope2/var:0')

tf.name_scope
当tf.get_variable遇上tf.name_scope,它定义的变量的最终完整名称将不受这个tf.name_scope的影响,如下:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('v_scope'):
   ...:     with tf.name_scope('n_scope'):
   ...:         x = tf.Variable([1], name='x')
   ...:         y = tf.get_variable('x', shape=[1], dtype=tf.int32)
   ...:         z = x + y
   ...:
In [3]: x.name, y.name, z.name
Out[3]: ('v_scope/n_scope/x:0', 'v_scope/x:0', 'v_scope/n_scope/add:0')

4.图变量的复用
想象一下,如果我们正在定义一个循环神经网络RNN,想复用上一层的参数以提高模型最终的表现效果,应该怎么做呢?

做法一:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.get_variable('var', [1])
   ...:     tf.get_variable_scope().reuse_variables()
   ...:     v2 = tf.get_variable('var', [1])
   ...:
In [3]: v1.name, v2.name
Out[3]: ('scope/var:0', 'scope/var:0')


做法二:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.get_variable('x', [1])
   ...:
In [3]: with tf.variable_scope('scope', reuse=True):
   ...:     v2 = tf.get_variable('x', [1])
   ...:
In [4]: v1.name, v2.name
Out[4]: ('scope/x:0', 'scope/x:0')

5.图变量的种类
TensorFlow的图变量分为两类:local_variables和global_variables。

如果我们想定义一个不需要长期保存的临时图变量,可以向下面这样定义它:

with tf.name_scope("increment"):
    zero64 = tf.constant(0, dtype=tf.int64)
    current = tf.Variable(zero64, name="incr", trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES])


--------------------- 
作者:烧煤的快感 
来源:CSDN 
原文:https://blog.csdn.net/gg_18826075157/article/details/78368924 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于TensorFlow图变量tf.Variable的用法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117644

相关文章

IDEA与JDK、Maven安装配置完整步骤解析

《IDEA与JDK、Maven安装配置完整步骤解析》:本文主要介绍如何安装和配置IDE(IntelliJIDEA),包括IDE的安装步骤、JDK的下载与配置、Maven的安装与配置,以及如何在I... 目录1. IDE安装步骤2.配置操作步骤3. JDK配置下载JDK配置JDK环境变量4. Maven配置下

Python中配置文件的全面解析与使用

《Python中配置文件的全面解析与使用》在Python开发中,配置文件扮演着举足轻重的角色,它们允许开发者在不修改代码的情况下调整应用程序的行为,下面我们就来看看常见Python配置文件格式的使用吧... 目录一、INI配置文件二、YAML配置文件三、jsON配置文件四、TOML配置文件五、XML配置文件

Spring中@Lazy注解的使用技巧与实例解析

《Spring中@Lazy注解的使用技巧与实例解析》@Lazy注解在Spring框架中用于延迟Bean的初始化,优化应用启动性能,它不仅适用于@Bean和@Component,还可以用于注入点,通过将... 目录一、@Lazy注解的作用(一)延迟Bean的初始化(二)与@Autowired结合使用二、实例解

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错

前端知识点之Javascript选择输入框confirm用法

《前端知识点之Javascript选择输入框confirm用法》:本文主要介绍JavaScript中的confirm方法的基本用法、功能特点、注意事项及常见用途,文中通过代码介绍的非常详细,对大家... 目录1. 基本用法2. 功能特点①阻塞行为:confirm 对话框会阻塞脚本的执行,直到用户作出选择。②

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

MyBatis-Flex BaseMapper的接口基本用法小结

《MyBatis-FlexBaseMapper的接口基本用法小结》本文主要介绍了MyBatis-FlexBaseMapper的接口基本用法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具... 目录MyBATis-Flex简单介绍特性基础方法INSERT① insert② insertSelec

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型