[Algorithm][综合训练][消减整数][最长上升子序列(二)][春游]详细讲解

本文主要是介绍[Algorithm][综合训练][消减整数][最长上升子序列(二)][春游]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.消减整数
    • 1.题目链接
    • 2.算法原理详解 && 代码实现
  • 2.最长上升子序列(二)
    • 1.题目链接
    • 2.算法原理详解 && 代码实现
  • 3.春游
    • 1.题目链接
    • 2.算法原理详解 && 代码实现


1.消减整数

1.题目链接

  • 消减整数

2.算法原理详解 && 代码实现

  • 解法:贪心 + 数学
    • 每次尽可能的减去之前数的两倍,并且能保证可以减到0
    • x % 2a == 0
    #include <iostream>
    using namespace std;int Check(int h)
    {int ret = 0, a = 1;while(h){ret++;h -= a;if(h % (2 * a) == 0){a *= 2;}}return ret;
    }int main()
    {int n = 0, h = 0;cin >> n;while(n--){cin >> h;cout << Check(h) << endl;}
    }
    

2.最长上升子序列(二)

1.题目链接

  • 最长上升子序列(二)

2.算法原理详解 && 代码实现

  • 自己的版本:动态规划 -> 50%
    int LIS(vector<int>& nums) 
    {int n = nums.size();vector<int> dp(n, 1);int ret = 1;for(int i = 1; i < n; i++){for(int j = 0; j < i; j++){if(nums[j] < nums[i]){dp[i] = max(dp[i], dp[j] + 1);}}ret = max(ret, dp[i]);}return ret;
    }
    
  • 优化版本:贪心 + 二分
    • 不关心前面的非递减子序列长什么样子,仅需知道长度为x的子序列末尾是多少即可
    • 存长度为x的所有子序列的末尾时,只用存最小的那个数即可
    • 优化:二分快速寻找插入位置
    int LIS(vector<int>& a)
    {int pos = 0;vector<int> dp(a.size() + 1, 0); // dp[i]: 长度为i的最小末尾// 查找x应该放在哪个位置for(const auto& x : a){// 边界情况处理if(pos == 0 || x > dp[pos]){dp[++pos] = x;}else{// 二分查找插入位置int l = 1, r = pos;while(l < r){int mid = (l + r) / 2;if(dp[mid] >= x){r = mid;}else{l = mid + 1;}}dp[l] = x;}}return pos;
    }
    

3.春游

1.题目链接

  • 春游

2.算法原理详解 && 代码实现

  • 解法:贪心 + 分类讨论 --> 细致讨论即可,容易疏漏
    请添加图片描述

    #include <iostream>
    using namespace std;long long n = 0, a = 0, b = 0;long long CostTotal(char ch)
    {long long sum = 0;if(ch == 'a'){sum = n / 2 * a;n %= 2;if(n){sum += min(min(a, b), b - a);}}else{sum = n / 3 * b;n %= 3;if(n == 1){sum += min(min(a, b), 2 * a - b);}else if(n == 2){sum += min(min(a, b), 3 * a - b);}}return sum;
    }int main()
    {int t = 0;cin >> t;while(t--){cin >> n >> a >> b;float av = a / 2.0, bv = b / 3.0;if(n <= 2){cout << min(a, b) << endl;continue;}if(av < bv){cout << CostTotal('a') << endl;}else{cout << CostTotal('b') << endl;}}return 0;
    }
    

这篇关于[Algorithm][综合训练][消减整数][最长上升子序列(二)][春游]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117134

相关文章

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

poj3261(可重复k次的最长子串)

题意:可重复k次的最长子串 解题思路:求所有区间[x,x+k-1]中的最小值的最大值。求sa时间复杂度Nlog(N),求最值时间复杂度N*N,但实际复杂度很低。题目数据也比较水,不然估计过不了。 代码入下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

PTA求一批整数中出现最多的个位数字

作者 徐镜春 单位 浙江大学 给定一批整数,分析每个整数的每一位数字,求出现次数最多的个位数字。例如给定3个整数1234、2345、3456,其中出现最多次数的数字是3和4,均出现了3次。 输入格式: 输入在第1行中给出正整数N(≤1000),在第二行中给出N个不超过整型范围的非负整数,数字间以空格分隔。 输出格式: 在一行中按格式“M: n1 n2 ...”输出,其中M是最大次数,n

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

整数Hash散列总结

方法:    step1  :线性探测  step2 散列   当 h(k)位置已经存储有元素的时候,依次探查(h(k)+i) mod S, i=1,2,3…,直到找到空的存储单元为止。其中,S为 数组长度。 HDU 1496   a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 。 x在 [-100,100] 解的个数  const int MaxN = 3000

hihocoder1050 : 树中的最长路

时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中,小Ho发现他不仅仅可以拼凑成一棵二叉树!还可以拼凑成一棵多叉树——好吧,其实就是更为平常的树而已。 但是不管怎么说,小Ho喜爱的玩具又升级换代了,于是他更加爱不释手(其实说起来小球和木棍有什么好玩的是吧= =)。小Ho手

POJ1631最长单调递增子序列

最长单调递增子序列 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;import java.math.BigInteger;import java.util.StringTokenizer;publ

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom