有关Prompt Engineering(提示词工程)的一些总结

2024-08-29 05:36

本文主要是介绍有关Prompt Engineering(提示词工程)的一些总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 什么是Prompt Engineering?

Prompt Engineering是指设计和优化输入提示(prompts)以获得所需输出的过程。

在使用像ChatGPT这样的语言模型时,输入提示的质量和结构对生成的结果有着至关重要的影响

通过精心设计的提示,可以更好地引导模型生成准确、有用和相关的响应。

2. 为什么要学习Prompt Engineering?

学会提问是一种艺术,学习Prompt Engineering,就是学会向ChatGPT提问的艺术。

一个好的提示词,可以让我们获得如下收益:

  • 提高响应质量:好的提示可以帮助模型生成更准确和相关的回答。
  • 节省时间:通过优化提示,可以减少反复尝试和调整的时间。
  • 增强控制:可以更好地控制生成内容的风格、格式和信息量。
  • 解决复杂问题:通过设计复杂的提示,可以解决更复杂和具体的问题。

3. 提问的基本原则

  • 明确和具体:提示应该尽可能明确和具体,避免模糊和广泛的问题。
不明确的提示:告诉我关于二战的事情。明确的提示:请告诉我关于二战期间诺曼底登陆的详细信息。
  • 分步引导:对于复杂问题,可以将提示分成多个步骤,引导模型逐步生成答案。
一步到位:解释量子力学。分步引导:首先解释什么是量子力学,然后介绍其主要原理,最后讨论其应用。
  • 提供上下文:提供足够的背景信息和上下文,可以帮助模型更好地理解和生成相关内容。
无上下文:解释相对论。有上下文:爱因斯坦在1905年提出了相对论。请解释这个理论的基本概念。
  • 使用示例:通过提供示例,可以帮助模型理解你期望的输出格式和内容。
无示例:写一封商业信函。有示例:请写一封商业信函,内容包括问候、介绍产品、提供报价和结束语。

4. 最佳实践RICE-F

我们在提问时,可以使用RICE-F原则

RICE-F原则是Prompt Engineering中的一个有效框架,用于设计和优化提示,以便从语言模型中获得更好的响应。

RICE-F代表Role(角色)、Instruction(指令)、Context(上下文)、Examples(示例)和Format(格式)。

下面是对每个原则的详细解释,并结合具体的使用场景和示例。

4.1 Role(角色)

定义:指定模型扮演的角色,以便生成特定风格或领域的内容。

使用场景:当你需要模型生成特定领域的专业内容时,可以指定一个角色。

示例:初始提示:请解释下区块链。优化提示:你是一名区块链专家,请解释区块链的工作原理及其在金融领域的应用。

4.2 Instruction(指令)

定义:明确告诉模型你希望它做什么,提供具体的指令。

使用场景:当你需要模型执行特定任务时,提供明确的指令可以提高响应的准确性。

示例:初始提示:写一个Python函数。优化提示:请写一个Python函数,该函数接收一个列表并返回列表中的最大值。

4.3 Context(上下文)

定义:提供足够的背景信息和上下文,以帮助模型更好地理解任务。

使用场景:当任务涉及复杂或多层次的信息时,提供上下文可以帮助模型生成更相关的内容。

示例:初始提示:解释相对论。优化提示:爱因斯坦在1905年提出了相对论。请解释这个理论的基本概念。

4.4 Examples(示例)

定义:通过提供示例,帮助模型理解你期望的输出格式和内容。

使用场景:当你需要特定格式或风格的输出时,提供示例可以显著提高模型的响应质量。

示例:初始提示:写一封商业信函。优化提示:请写一封商业信函,内容包括问候、介绍产品、提供报价和结束语。示例如下:
尊敬的客户,您好!我们很高兴向您介绍我们的新产品。该产品具有以下特点……期待您的回复。此致,
公司名称

4.5 Format(格式)

定义:指定输出的格式,如段落、列表、代码等,以确保生成内容符合预期。

使用场景:当你需要特定格式的输出时,明确指定格式可以提高响应的可读性和实用性。

示例:初始提示:解释机器学习的主要类型。优化提示:请以列表形式解释机器学习的主要类型,并简要描述每种类型。
- 监督学习:使用标注数据进行训练。
- 无监督学习:使用未标注数据进行训练。
- 强化学习:通过奖励和惩罚机制进行学习。

4.6 综合示例

结合RICE-F原则,我们来看一个综合示例:

任务:解释机器学习的主要类型及其应用。初始提示:解释机器学习的主要类型及其应用。优化提示:你是一名机器学习专家。请解释机器学习的主要类型及其应用。以下是一些示例:- 监督学习:使用标注数据进行训练。例如,图像分类。
- 无监督学习:使用未标注数据进行训练。例如,聚类分析。
- 强化学习:通过奖励和惩罚机制进行学习。例如,自动驾驶。请以列表形式提供解释,并简要描述每种类型及其应用。

通过应用RICE-F原则,我们可以显著提高提示的质量,从而获得更准确和相关的响应。

5. 更多资料

更多有关Prompt Engineering的一些指导原则,可以参考下面的资料:

  • https://github.com/dair-ai/Prompt-Engineering-Guide
  • https://github.com/f/awesome-chatgpt-prompts

这篇关于有关Prompt Engineering(提示词工程)的一些总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116989

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

整数Hash散列总结

方法:    step1  :线性探测  step2 散列   当 h(k)位置已经存储有元素的时候,依次探查(h(k)+i) mod S, i=1,2,3…,直到找到空的存储单元为止。其中,S为 数组长度。 HDU 1496   a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 。 x在 [-100,100] 解的个数  const int MaxN = 3000

状态dp总结

zoj 3631  N 个数中选若干数和(只能选一次)<=M 的最大值 const int Max_N = 38 ;int a[1<<16] , b[1<<16] , x[Max_N] , e[Max_N] ;void GetNum(int g[] , int n , int s[] , int &m){ int i , j , t ;m = 0 ;for(i = 0 ;

go基础知识归纳总结

无缓冲的 channel 和有缓冲的 channel 的区别? 在 Go 语言中,channel 是用来在 goroutines 之间传递数据的主要机制。它们有两种类型:无缓冲的 channel 和有缓冲的 channel。 无缓冲的 channel 行为:无缓冲的 channel 是一种同步的通信方式,发送和接收必须同时发生。如果一个 goroutine 试图通过无缓冲 channel

9.8javaweb项目总结

1.主界面用户信息显示 登录成功后,将用户信息存储在记录在 localStorage中,然后进入界面之前通过js来渲染主界面 存储用户信息 将用户信息渲染在主界面上,并且头像设置跳转,到个人资料界面 这里数据库中还没有设置相关信息 2.模糊查找 检测输入框是否有变更,有的话调用方法,进行查找 发送检测请求,然后接收的时候设置最多显示四个类似的搜索结果

Prompt - 将图片的表格转换成Markdown

Prompt - 将图片的表格转换成Markdown 0. 引言1. 提示词2. 原始版本 0. 引言 最近尝试将图片中的表格转换成Markdown格式,需要不断条件和优化提示词。记录一下调整好的提示词,以后在继续优化迭代。 1. 提示词 英文版本: You are an AI assistant tasked with extracting the content of