机器学习:DBSCAN算法(内有精彩动图)

2024-08-29 03:04

本文主要是介绍机器学习:DBSCAN算法(内有精彩动图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、DBSCAN算法

1.动图展示(图片转载自网络)

2.步骤详解

3.参数配置

二、代码实现

1.完整代码

2.代码详解

1.导入数据

2.通过循环确定参数最佳值

总结


前言

        DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法。它可以发现任意形状的簇并能够处理噪声数据。

 

一、DBSCAN算法

1.动图展示(图片转载自网络)

  • 如图所示是DBSCAN算法的实现过程
  • 这里使用参数是半径为1,最小样本量为4

 

2.步骤详解

  1. 初始化:从数据集中的每个点开始,初始化簇的构建。
  2. 核心点检测:判断每个点是否为核心点(即其邻域点的数量是否大于或等于 min_samples)。
  3. 簇扩展
    • 对于每个核心点,将其邻域内的所有点添加到簇中。
    • 递归扩展这些点的邻域,直到簇扩展完成。
  4. 标记噪声点:那些没有被包含在任何簇中的点被标记为噪声点。

如图所示:

  • 从A点开始,根据给定半径判断邻域内样本数是否符合给定最小样本量从而确定该点是不是核心
  • 再遍历该邻域内每个点,重复上述步骤
  • 直到某个点邻域内样本数小于给定最小样本量
  • 至此簇扩展完成
  • 此图 A B C 三点为一个簇内的点  N是离群点

 

3.参数配置

  1. eps: 定义了一个点的邻域的最大距离(即半径)。如果一个点的邻域内有至少 min_samples 个点,则这些点被认为是一个簇的一部分。

  2. min_samples: 形成一个簇所需的最小点数。如果一个点的邻域内的点数大于或等于 min_samples,则这些点被视为核心点,并且它们的邻域中的点将成为同一簇的一部分。

 

二、代码实现

1.完整代码

import pandas as pd
from sklearn.cluster import DBSCAN
from sklearn import metricsdata = pd.read_csv('data.txt', sep=' ')
x = data.iloc[:, 1:5]
# from sklearn.preprocessing import StandardScaler
# std = StandardScaler()
# x = std.fit_transform(x)"""
eps:半径
min_samples:最小密度
labels:分类结果   自动分类 -1为离群点
"""
scores = []
for i in range(2, 20):db = DBSCAN(eps=i, min_samples=2).fit(x)labels = db.labels_score = metrics.silhouette_score(x, labels)scores.append(score)print(scores)
best_i = scores.index(max(scores)) + 2
print("最佳半径为:", best_i)
db = DBSCAN(eps=best_i, min_samples=2).fit(x)
labels = db.labels_
score = metrics.silhouette_score(x, labels)
print("此时轮廓指数为:", score)data['cluster_db'] = labels
data = data.sort_values('cluster_db', ascending=True)pass

输出结果:

[-0.03670705609846274, -0.03670705609846274, -0.06781609566358748, -0.06781609566358748, 0.1626084889128696, 0.12626205982196476, 0.16564759416041527, 0.42951251219183106, 0.49530955296776086, 0.49530955296776086, 0.49530955296776086, 0.49530955296776086, 0.5857040721127795, 0.5857040721127795, 0.5238781710613801, 0.5238781710613801, 0.6731775046455796, 0.6731775046455796]
最佳半径为: 18
此时轮廓指数为: 0.6731775046455796

 

2.代码详解

1.导入数据

可以进行标准化也可以不进行标准化

import pandas as pd
from sklearn.cluster import DBSCAN
from sklearn import metricsdata = pd.read_csv('data.txt', sep=' ')
x = data.iloc[:, 1:5]
# from sklearn.preprocessing import StandardScaler
# std = StandardScaler()
# x = std.fit_transform(x)

 

2.通过循环确定参数最佳值

  • 最后还将分类好的标签添加进了原数据
  • 聚类算法通过轮廓系数来评价算法的好坏:
    • 轮廓系数范围在[-1,1]之间。该值越大,越合理
"""
eps:半径
min_samples:最小密度
labels:分类结果   自动分类 -1为离群点
"""
scores = []
for i in range(2, 20):db = DBSCAN(eps=i, min_samples=2).fit(x)labels = db.labels_score = metrics.silhouette_score(x, labels)scores.append(score)print(scores)
best_i = scores.index(max(scores)) + 2
print("最佳半径为:", best_i)
db = DBSCAN(eps=best_i, min_samples=2).fit(x)
labels = db.labels_
score = metrics.silhouette_score(x, labels)
print("此时轮廓指数为:", score)
data['cluster_db'] = labels
data = data.sort_values('cluster_db', ascending=True)

输出:

 

总结

        两种聚类算法已讲完,聚类算法适合原本没有标签只有特征的数据进行使用

这篇关于机器学习:DBSCAN算法(内有精彩动图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116654

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert