边缘检测算子

2024-08-29 02:18
文章标签 检测 算子 边缘

本文主要是介绍边缘检测算子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

边缘是指图像中像素值突变的地方。图像的显著变化部位通常反映了图像的重要特征。

边缘检测方法可以大致分为两大类:基于查找和基于零穿越。基于查找的方法是通过寻找图像中一阶导数中的最大和最小值来检测边缘,通常将边界定位在梯度值最大的方向。基于零穿越的方法是通过寻找图像二阶导数零穿越来寻找边界。

一阶微分算子

一阶微分边缘算子也称为梯度边缘算子,它是利用图像在边缘处的阶跃性,即图像梯度在边缘取得极大值的特性进行边缘检测。梯度是

一个矢量,它具有方向和模:

梯度的方向提供了边缘的趋势信息,因为梯度方向始终是垂直于边缘方向,梯度的模值大小提供了边缘的强度信息。

在实际使用中,通常利用有限差分进行梯度近似:

Roberts边缘检测算子

1963年,Roberts提出了这种寻找边缘的算子。Roberts边缘算子是一个2x2的模板,采用的是对角方向相邻的两个像素之差。从图像处理的实际效果来看,边缘定位较准,对噪声敏感。在Roberts检测算子中:




可以导出Roberts在点(i+1/2,j+1/2)(i+1/2,j+1/2)处的水平与竖直边缘检测卷积核为:


Prewitt边缘检测算子

Prewitt利用周围邻域8个点的灰度值来估计中心的梯度,是一种平均滤波,它的梯度计算公式如下:


所以,Prewitt的卷积核为:


Sobel算子

以离散型的差分算子计算图像亮度函数梯度的近似值,是一种基于一阶导数的边缘检测算子。由于该算子引入了类似局部平均的运算,因此对噪声具有平滑的作用。

比起Prewitt算子,Sobel也是用周围8个像素来估计中心像素的梯度,是一种加权平均滤波,但是Sobel算子认为靠近中心像素的点应该给予更高的权重,所以Sobel算子把与中心像素4邻接的像素的权重设置为2或-2。

Sobel边缘检测算子的卷积核为:

Canny边缘检测算子

Canny边缘检测是边缘检测算子中最为常用的一种。

Canny提出了边缘检测算子优劣评判的三条标准:

  • 高的检测率。边缘检测算子应该只对边缘进行响应,检测算子不漏检任何边缘,也不应该将非边缘标记为边缘。
  • 精确定位。检测到的边缘与实际边缘之间的距离要尽可能的小。
  • 明确的响应。对每一条边缘只有一次响应,只得到一个点。
Canny边缘检测之所以优秀是因为它在一阶微分算子的基础上,增加了非最大值抑制和双阈值两项改进。利用非极大值抑制不仅可以有效地抑制多响应边缘,而且还可以提高边缘的定位精度;利用双阈值可以有效减少边缘的漏检率。

Canny边缘检测主要分四步进行:

1.去噪;

2.计算梯度和方向角;

3.非极大值抑制;

4.滞后阈值化。


非极大值抑制


根据上图可知,要进行非极大值抑制,就首先要确定像素点C的灰度值在其8值邻域内是否为最大。图中蓝色的线条方向为C点的梯度方向,这样就可以确定其局部的最大值肯定分布在这条线上,也即出了C点外,梯度方向的交点dTmp1和dTmp2这两个点的值也可能会是局部最大值。因此,判断C点灰度与这两个点灰度大小即可判断C点是否为其邻域内的局部最大灰度点。如果经过判断,C点灰度值小于这两个点中的任一个,那就说明C点不是局部极大值,那么则可以排除C点为边缘。这就是非极大值抑制的工作原理。

滞后阈值化

由于噪声的影响,经常会在本应该连续的边缘出现断裂的问题。滞后阈值化设定两个阈值:一个为高阈值ThTh,一个为低阈值TlTl。如果任何像素边缘算子的影响超过高阈值,将这些像素标记为边缘;响应超过低阈值(高低阈值之间)的像素,如果与已经标记为边缘的像素4-邻接或8-邻接,则将这些像素也标记为边缘。所以不整个过程描述如下:

  1. 如果该像素的梯度值小于TlTl,则该像素为非边缘像素;
  2. 如果该像素的梯度值大于ThTh,则该像素为边缘像素;
  3. 如果该像素的梯度值介于TlTlThTh之间,需要进一步检测该像素的3×33×3邻域内的8个点,如果这8个点内有一个或以上的点梯度超过了ThTh,则该像素为边缘像素,否则不是边缘像素。

二阶微分算子

边缘是图像的一阶导数局部最大值的地方,那么也意味着该点的二阶导数为零。二阶微分边缘检测算子就是利用图像在边缘处的阶跃性导致图像二阶微分在边缘处出现零值这一特性进行边缘检测的。

Laplace边缘检测算子


近似为:


对应的二阶微分卷积核为:


所以二阶微分检测边缘的方法就分两步:1)用上面的Laplace核与图像进行卷积;2)对卷积后的图像,取得那些卷积结果为0的点。

虽然上述使用二阶微分检测边缘的方法简单,但它的缺点是对噪声十分敏感,同时也没有能够提供边缘的方向信息。

LOG方法

为了实现对噪声的抑制,Marr等提出了LOG的方法。

为了减少噪声对边缘的影响,首先图像要进行低通滤波,LOG采用了高斯函数作为低通滤波器。高斯函数为:




参考:

[1] https://www.cnblogs.com/ronny/p/4001910.html




这篇关于边缘检测算子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116559

相关文章

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测

关于饰品类产品合规问题宣导: 产品法规RSL要求 RSL测试是根据REACH法规及附录17的要求进行测试。REACH法规是欧洲一项重要的法规,其中包含许多对化学物质进行限制的规定和高度关注物质。 为了确保珠宝首饰的安全性,欧盟REACH法规规定,珠宝首饰上架各大电商平台前必须进行RSLReport(欧盟禁限用化学物质检测报告)资质认证,以确保产品不含对人体有害的化学物质。 RSL-铅,

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户

独立按键单击检测(延时消抖+定时器扫描)

目录 独立按键简介 按键抖动 模块接线 延时消抖 Key.h Key.c 定时器扫描按键代码 Key.h Key.c main.c 思考  MultiButton按键驱动 独立按键简介 ​ 轻触按键相当于一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通与断开。  ​ 按键抖动 由于按键内部使用的是机

基于stm32的河流检测系统-单片机毕业设计

文章目录 前言资料获取设计介绍功能介绍具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机设计精品

Android模拟器的检测

Android模拟器的检测 需求:最近有一个需求,要检测出模拟器,防止恶意刷流量刷注册。 1.基于特征属性来检测模拟器,比如IMSI,IDS,特殊文件等等。 这个方案局限性太大,貌似现在大部分模拟器默认就是修改了的,还不需要人为的去修改。 经过测试,发现如下图所示。 如果是模拟器的话,这些特殊值应该返回true,比如DeviceIDS,Build。可是居然返回了false,说明特殊值