动手学深度学习(pytorch)学习记录19-参数管理[学习记录]

2024-08-29 00:52

本文主要是介绍动手学深度学习(pytorch)学习记录19-参数管理[学习记录],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 参数访问
    • 目标参数
    • 一次性访问所有参数
    • 从嵌套块收集参数
  • 参数初始化
    • 内置初始化
    • 自定义初始化
  • 参数绑定
  • 延后初始化

本节内容:
访问参数,用于调试、诊断和可视化;
参数初始化;
在不同模型组件间共享参数;
延后初始化。

# 单隐藏层的多层感知机
import torch
from torch import nnnet = nn.Sequential(nn.Linear(4, 8), nn.ReLU(), nn.Linear(8, 1))
X = torch.rand(size=(2, 4))
net(X)

在这里插入图片描述

参数访问

通过Sequential类定义的模型可以通过索引来访问模型的任意层。 模型就像一个列表一样,每层的参数都在其属性中。 如下所示,检查第二个全连接层的参数。

print(net[2].state_dict())
OrderedDict([('weight', tensor([[ 0.0143, -0.1299, -0.0290,  0.2700,  0.2086, -0.3533,  0.0657,  0.2856]])), ('bias', tensor([-0.1287]))])

通过输出可知:全连接层包含两个参数,分别是该层的权重和偏置。
每个参数都表示为参数类的一个实例。 要对参数执行任何操作,首先我们需要访问底层的数值。

目标参数

print(type(net[2].bias))
print(net[2].bias)
print(net[2].bias.data)
<class 'torch.nn.parameter.Parameter'>
Parameter containing:
tensor([-0.1287], requires_grad=True)
tensor([-0.1287])

参数是复合的对象,包含值、梯度和额外信息。
在上面这个网络中,由于我没有调用反向传播,所以参数的梯度处于初始状态。

net[2].weight.grad == None
True

一次性访问所有参数

当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。 当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂, 因为我们需要递归整个树来提取每个子块的参数。 下面,演示来访问第一个全连接层的参数和访问所有层。

print(*[(name, param.shape) for name, param in net[0].named_parameters()]) # *应该是用于解包操作,对比有无*,发现删去*后,输出或多一个[]
print(*[(name, param.shape) for name, param in net.named_parameters()])
('weight', torch.Size([8, 4])) ('bias', torch.Size([8]))
('0.weight', torch.Size([8, 4])) ('0.bias', torch.Size([8])) ('2.weight', torch.Size([1, 8])) ('2.bias', torch.Size([1]))

另一种访问网络参数的方法

net.state_dict()['2.bias'].data
tensor([-0.1287])

从嵌套块收集参数

def block1():return nn.Sequential(nn.Linear(4, 8), nn.ReLU(),nn.Linear(8, 4), nn.ReLU())def block2():net = nn.Sequential()for i in range(4):# 在这里嵌套net.add_module(f'block {i}', block1())
# 用 add_module 方法将 block1 函数返回的 nn.Sequential 对象添加到 net 容器中。每次迭代都会添加一个新的模块,并且每个模块都有一个唯一的名称(例如 'block 0', 'block 1', ...)return netrgnet = nn.Sequential(block2(), nn.Linear(4, 1))
rgnet(X)
tensor([[0.1559],[0.1559]], grad_fn=<AddmmBackward0>)

查看一下网络结构

print(rgnet)
Sequential((0): Sequential((block 0): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 1): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 2): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU())(block 3): Sequential((0): Linear(in_features=4, out_features=8, bias=True)(1): ReLU()(2): Linear(in_features=8, out_features=4, bias=True)(3): ReLU()))(1): Linear(in_features=4, out_features=1, bias=True)
)

因为层是分层嵌套的,所以也可以像通过嵌套列表索引一样访问它们。 下面,访问第一个主要的块中、第二个子块的第一层的偏置项。

rgnet[0][1][0].bias.data
tensor([-0.4003,  0.3388,  0.2142,  0.3416, -0.0377,  0.3460, -0.1539,  0.0325])

参数初始化

PyTorch的nn.init模块提供了多种预置初始化方法。

内置初始化

首先调用内置的初始化器。 下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量, 且将偏置参数设置为0。

def init_normal(m):if type(m) == nn.Linear:nn.init.normal_(m.weight, mean=0, std=0.01)nn.init.zeros_(m.bias)
net.apply(init_normal)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([0.0106, 0.0016, 0.0035, 0.0076]), tensor(0.))

还可以将所有参数初始化为给定的常数,比如初始化为6

def init_constant(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 6)nn.init.zeros_(m.bias)
net.apply(init_constant)
net[0].weight.data[0], net[0].bias.data[0]
(tensor([6., 6., 6., 6.]), tensor(0.))

还可以对某些块应用不同的初始化方法。
比如使用Xavier初始化方法初始化第一个神经网络层, 然后将第三个神经网络层初始化为常量值42。
(泰库辣)

def init_xavier(m):if type(m) == nn.Linear:nn.init.xavier_uniform_(m.weight)
def init_42(m):if type(m) == nn.Linear:nn.init.constant_(m.weight, 42)net[0].apply(init_xavier)
net[2].apply(init_42)
print(net[0].weight.data[0])
print(net[2].weight.data)
tensor([-0.5471,  0.4637, -0.2951,  0.1913])
tensor([[42., 42., 42., 42., 42., 42., 42., 42.]])

自定义初始化

def my_init(m):if type(m) == nn.Linear:print("Init", *[(name, param.shape)for name, param in m.named_parameters()][0])nn.init.uniform_(m.weight, -10, 10)m.weight.data *= m.weight.data.abs() >= 5# 将所有权重的绝对值小于5的权重设置为0,而保持权重的绝对值大于或等于5的权重不变net.apply(my_init)
net[0].weight[:2]
Init weight torch.Size([8, 4])
Init weight torch.Size([1, 8])tensor([[ 5.1561, -0.0000,  5.4036,  5.2387],[-7.6918,  9.9444,  0.0000, -9.6561]], grad_fn=<SliceBackward0>)

参数绑定

个层间共享参数: 可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。

# 我们需要给共享层一个名称,以便可以引用它的参数
shared = nn.Linear(8, 8)
net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),shared, nn.ReLU(),shared, nn.ReLU(),nn.Linear(8, 1))
net(X)
# 检查参数是否相同
print(net[2].weight.data[0] == net[4].weight.data[0])
net[2].weight.data[0, 0] = 100
# 确保它们实际上是同一个对象,而不只是有相同的值
print(net[2].weight.data[0] == net[4].weight.data[0])
tensor([True, True, True, True, True, True, True, True])
tensor([True, True, True, True, True, True, True, True])

这个例子表明第三个和第五个神经网络层的参数是绑定的。 它们不仅值相等,而且由相同的张量表示。 因此,如果我们改变其中一个参数,另一个参数也会改变。

延后初始化

我们定义了网络架构,但没有指定输入维度。
我们添加层时没有指定前一层的输出维度。
我们在初始化参数时,甚至没有足够的信息来确定模型应该包含多少参数。
这里的诀窍是框架的延后初始化(defers initialization), 即直到数据第一次通过模型传递时,框架才会动态地推断出每个层的大小。

import torch
from torch import nn
from d2l import torch as d2l
net = nn.Sequential(nn.LazyLinear(256), nn.ReLU(), nn.LazyLinear(10))
C:\anaconda3\envs\pytorch\lib\site-packages\torch\nn\modules\lazy.py:181: UserWarning: Lazy modules are a new feature under heavy development so changes to the API or functionality can happen at any moment.warnings.warn('Lazy modules are a new feature under heavy development '

网络络还不知道输入层权重的维度,因为输入维度仍然未知。

net[0].weight
<UninitializedParameter>

通过网络传递数据后,框架最终初始化参数。
一旦知道输入维度20,框架就可以通过插入20的值来识别第一层权重矩阵的形状。识别出第一层的形状后,框架继续到第二层,通过计算图依次进行,直到所有形状都已知。请注意,在这种情况下,只有第一层需要延迟初始化,但框架会顺序初始化。一旦已知所有参数形状,框架最终就可以初始化参数。

X = torch.rand(2, 20)
net(X)net[0].weight.shape
torch.Size([256, 20])

以下方法通过网络传递伪输入进行试运行,以推断所有参数形状并随后初始化参数。稍后当不需要默认随机初始化时将使用它。

@d2l.add_to_class(d2l.Module)  #@save
def apply_init(self, inputs, init=None):self.forward(*inputs)if init is not None:self.net.apply(init)
AttributeError: module 'd2l.torch' has no attribute 'add_to_class'

封面图片来源

欢迎点击我的主页查看更多文章。
本人学习地址https://zh-v2.d2l.ai/
恳请大佬批评指正。

这篇关于动手学深度学习(pytorch)学习记录19-参数管理[学习记录]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116376

相关文章

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

Linux内存泄露的原因排查和解决方案(内存管理方法)

《Linux内存泄露的原因排查和解决方案(内存管理方法)》文章主要介绍了运维团队在Linux处理LB服务内存暴涨、内存报警问题的过程,从发现问题、排查原因到制定解决方案,并从中学习了Linux内存管理... 目录一、问题二、排查过程三、解决方案四、内存管理方法1)linux内存寻址2)Linux分页机制3)

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

关于rpc长连接与短连接的思考记录

《关于rpc长连接与短连接的思考记录》文章总结了RPC项目中长连接和短连接的处理方式,包括RPC和HTTP的长连接与短连接的区别、TCP的保活机制、客户端与服务器的连接模式及其利弊分析,文章强调了在实... 目录rpc项目中的长连接与短连接的思考什么是rpc项目中的长连接和短连接与tcp和http的长连接短

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex