本文主要是介绍BloomFilter原理和使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- BloomFilter原理和使用
- BloomFilter原理
- 适用场景
- 基础性质
- False-Positive推导
- Bloom Filter之python包
- pybloomfilter
- pybloomfilter代码实例
BloomFilter原理和使用
BloomFilter原理
适用场景
在很多场景下,会遇到流式元素的处理,最主要的是集合判断与去重问题。例如我们会判断一个email地址是否在黑名单中,网络爬虫会判断一个url是否已经存在于待抓取列表或者已抓取,视频库的去重等等。不幸的是通常情况下这类问题面临的数据规模都较大,比如网络爬虫系统的抓取url通常达到数亿级别,如果采用哈希表存储这些url将会耗费大量的内存以至于在实际生产使用过程中几乎不可用,而布隆滤波器确实一种近乎完美的替代方案。(谨记:大部分的近似方案虽然会带来少量的损失,但是会给性能和效果带来极大的提升)
在个人研究方面,有一个场景需要对item进行流式处理,最主要的操作便是查询是否已经存在,由于需要查询的信息量较大,且需要在分布式场景下进行全局状态维护,为了降低分布式维护信息的量,减少通信代价,故希望采用bloom filter期待有所作用。
本实验目前采用最基础的bloom filter的形式,暂不深入研究bloom filter各种拓展形式。
基础性质
布隆过滤器(Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的。它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中。
文章:Space/Time Trade-offs in Hash Coding with Allowable Errors
布隆滤波器会有一个m位的bit数组(每位初始设为0)以及k个随机哈希函数,每个哈希函数的输出都是一个(0,m-1)之间的一个数(对应bit数组下标)。
添加操作:输入x,对于每一个哈希函数,计算j= hash(x),将m_bit[j] 设成1;
查询操作:输入x,对于每一个哈希函数,计算j= hash(x),如果m_bit[j] 不等于1,则说明x不在集合中,否则如果k个函数的映射位都为1,说明x存在于集合中。
优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter判断某一元素存在于某集合中,但是实际上该元素并不在集合中)和删除困难,但是没有识别错误的情形(即假反例Falsenegatives,如果某个元素确实没有在该集合中,那么Bloom Filter 是不会报告该元素存在于集合中的,所以不会漏报)。
False-Positive推导
假设k个哈希函数完全随机,即以等概率选在(0,m-1)中的一个数,那么m_bit中某一位在添加元素时一次哈希没有被置位的概率是:
经过k次哈希没有被置位的概率是:
添加n个元素该位仍然没有被置位的概率是:
那么该位在添加n个元素后被置位的概率是:
现在对于一个新元素,要判断其是否在集合中,如果判断该元素存在于集合中,说明k个哈希位都为1,但是有可能会错误的把实际不存在于集合中判断为存在于集合中(False Positive),该事件发生的概率为:
可以看出随着m(位数组大小)的增加,False Positive概率会下降,同时随着插入元素个数 n 的增加,False Positives的概率又会上升。
对于给定的m、n,哈希函数的个数k的最优值为:
对于给定的False Positives概率 p和元素个数n,位数组m的最优值为:
Bloom Filter之python包
- pybloom
- pybloom_live
- pybloomfilter
这里仅介绍pybloomfilter的安装与使用
pybloomfilter
Pybloomfilter是一个用java实现的bloomfilter版本,为了兼顾效率,内部位数组使用C实现。
Pybloomfilter构造时允许传入capacity(即n),error rate,位数组大小(m),哈希函数个数(即k)以及一个序列化的nmap文件。
官方文档:http://axiak.github.io/pybloomfiltermmap/ (需要开全局代理,否则可能被墙)
下载地址:https://github.com/axiak/pybloomfiltermmap
在ubuntu中可以直接使用命令安装:sudo pip install pybloomfiltermmap
在安装过程中出现如下问题(不管是下载后编译安装还是直接使用命令安装):
发扬曾经学到优良传统,遇到错误首先应该分析出错返回的结果,然后根据理解再去找问题。
这里发现是编译的时候有相关的c库找不到,于是开始谷歌:
真正解决问题的博客:https://blog.csdn.net/yingyujianmo/article/details/49634511
在ubuntu上安装软件时,经常出现这样的问题:
/usr/bin/ld: cannot find -l****
问题解决办法,详细内容参考上述博客。
另外还有一种常见解决方案,为给出博文的第一种,不过此处并没有解决问题:http://blog.51cto.com/eminzhang/1285705
核心问题在于该库是存在的,但是名称有所变化,需要增加一个软链接:
具体操作:
首先定位问题,使用命令:locate libcrypto
查看,发现 libcrypto.so.XXX
是存在的,但是libcrypto.so
是不存在。
因此进入对应的文件夹,建立对应的软链接:
w@ubuntu:/lib/x86_64-linux-gnu$ sudo ln -s libcrypto.so.1.0.0 libcrypto.so
问题解决
类似的/usr/bin/ld: cannot find -l****
问题都可以通过这种方法解决。
进而使用命令编译安装pybloomfilter
:
w@ubuntu:~/Desktop/pybloomfiltermmap-master$ sudo python setup.py install
成功!
另外,使用如下命令安装pybloomfilter
,安装貌似没有问题,但是无法使用,会出现错误:
pip install pybloomfilter
运行时出现错误:
应该是缺少了某C语言相关的包,之后尝试pybloom
包,可以运行,API接口和pybloomfilter
不太一样,速度上估计也慢一些,似乎还有一些不准确,这里主要使用pybloomfilter
。
pybloomfilter代码实例
#! /usr/bin/env python
# -*- coding:utf-8 -*-import os
import sys
reload(sys)
sys.setdefaultencoding('utf-8')import randomfrom pybloomfilter import BloomFilter# 创建一个capacity等于100万,error rate等于0.001的bloomfilter对象
bfilter = BloomFilter(1000000,0.001,'bf_test.bloom')# 添加100个元素
for x in xrange(1000000):bfilter.add(str(x))# 与nmap文件同步
bfilter.sync()# 测试error rate
error_in = 0
for x in xrange(2000000):if str(x) in bfilter and x > 1000000:error_in += 1print "error_rate:%s" % (error_in*1.0/1000000)
输出结果为:
与0.001的既设值很接近,还是非常精确且值得信赖的。
关于API还需要进一步学习总结,以及在图划分的实际测试结果,见后续博客。
这篇关于BloomFilter原理和使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!