力扣hot100-动态规划

2024-08-28 21:52
文章标签 动态 规划 力扣 hot100

本文主要是介绍力扣hot100-动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 概念
    • 动态规划
    • 基本思想
    • 常见步骤
    • 常用技巧
    • 常见问题类型
  • 动态规划题目
    • 题目: 爬楼梯
      • 题解

概念

动态规划

动态规划(Dynamic Programming,简称DP)是一种解决问题的算法思想,通常用于优化问题。它的核心思想是将一个大问题分解成若干个子问题,并通过保存子问题的解来避免重复计算,从而提高效率。

基本思想

  1. 优化子结构:动态规划适用于那些可以将问题分解为子问题的问题,且这些子问题的解可以用来构建原问题的解。也就是说,问题具有重叠子问题的性质。

  2. 最优子结构:原问题的最优解可以由子问题的最优解组合而成。即,如果子问题的解是最优的,那么它们的组合也能构成原问题的最优解。

常见步骤

  1. 定义状态
    确定DP数组(或表)中的状态代表什么。状态通常是对问题的某一方面的描述,可以是一个数组或矩阵中的一个元素。

  2. 确定状态转移方程
    找出状态之间的关系,通常是用来从一个状态计算出另一个状态的公式或规则。

  3. 初始化状态
    设置边界条件,通常是最简单的情况或基础情况的解。例如,数组的第一个元素或最小子问题的解。

  4. 填充DP表
    根据状态转移方程从初始状态开始,逐步计算出所有状态的解,直到得到原问题的解。

  5. 返回结果
    最终的解通常会保存在DP表的某个位置,根据问题的要求返回相应的值。

常用技巧

  1. 空间优化
    如果DP表的某一行或某一列只依赖于前一行或列,可以只保留当前行(或列)的状态,减少空间复杂度。例如,二维DP数组可以优化为一维数组。

  2. 状态压缩
    如果状态转移只依赖于有限个先前状态,可以使用状态压缩技巧将二维状态数组转为一维数组。

  3. 递推和备忘录
    递归方法与动态规划结合称为备忘录法(Memoization),通过缓存已经计算过的子问题的结果来避免重复计算。

  4. 按序计算
    按照状态转移的依赖顺序填充DP表,确保计算某一状态时其依赖的状态已经计算完毕。

  5. 重叠子问题
    动态规划特别适用于存在重叠子问题的情况,即问题可以被分解为多个相同的子问题,这些子问题的解在不同的计算中被多次使用。

常见问题类型

  1. 路径问题
    比如“最短路径”或“最长路径”,如网格最短路径、背包问题等。

  2. 选择问题
    比如“选择某些元素使得总和最大”,如背包问题、股票买卖问题等。

  3. 字符串问题
    如“编辑距离”、“最长公共子序列”、“字符串匹配”等。

  4. 序列问题
    比如“最大子序列和”、“最长递增子序列”等。

动态规划题目

题目: 爬楼梯

原题链接: 爬楼梯
在这里插入图片描述

题解

爬楼梯问题的动态规划解法的步骤如下:

  1. 定义状态
    dp[i] 表示到达第 i 层楼梯的方案数。

  2. 初始化状态

    • dp[0] = 1:表示在第0层(即不爬楼梯)只有一种方式,即什么都不做。
    • dp[1] = 1:表示只有一种方式到达第1层,即一步到达。
  3. 状态转移方程

    • dp[i] = dp[i - 1] + dp[i - 2]:到达第 i 层的方案数等于到达第 i-1 层的方案数加上到达第 i-2 层的方案数。因为从第 i-1 层可以一步到达第 i 层,从第 i-2 层可以两步到达第 i 层。
  4. 填充DP表

    • i = 2 开始,逐步计算到达每一层的方案数,并存储在 dp 数组中。
    public static int climbStairs(int n) {// 定义状态int[] dp = new int[n + 1];// dp[i]表示爬到第i层楼梯的方案数// 初始状态dp[0] = 1;dp[1] = 1;// 状态转移方程  dp[i] = dp[i-1]+dp[i-2];for (int i = 2; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}

我觉得这个题非常适合新手入门动态规划,这个题帮助新手掌握动态规划的核心思想,包括如何定义状态初始化状态如何进行状态转移如何处理边界条件


❤觉得有用的可以留个关注~❤

这篇关于力扣hot100-动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115991

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

Java导出Excel动态表头的示例详解

《Java导出Excel动态表头的示例详解》这篇文章主要为大家详细介绍了Java导出Excel动态表头的相关知识,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录前言一、效果展示二、代码实现1.固定头实体类2.动态头实现3.导出动态头前言本文只记录大致思路以及做法,代码不进

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节