用于目标说话人提取的统一视听线索

2024-08-28 19:44

本文主要是介绍用于目标说话人提取的统一视听线索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第二章 目标说话人提取之《Unified Audio Visual Cues for Target Speaker Extraction



前言

语音新手入门,学习读懂论文。
本文作者机构是
在这里插入图片描述


一、任务

提出了一个统一的TSE网络,称为Uni-Net,它采用分而治之的策略将音频和嘴唇线索融合到不同的网络中,利用每个线索的独特信息。从各种线索中提取的语音作为先验信息,通过后处理网络进一步细化。

二、动机

语音注册的方法会面临一些问题,如年龄和情绪会改变说话人的声音特征。此外,由于混合物中相似的语音特性,性能也会下降。

三、挑战

音频线索反映了说话者独特的声音属性,而视觉线索与目标语音在时间上是同步的。此外,音频线索是时不变的,而视觉线索是时变的,导致两者之间的差异。因此,在混合语音的共享网络中集成音频和视觉线索并不是最佳选择。这些线索会相互干扰,严重阻碍了性能的提高。

四、方法

1.总体架构

在这里插入图片描述
提出的框架由三个部分组成:基于音频线索的提取子网(ACENet)、基于视觉线索的提取子网(VCENet)和后处理网络(PPNet)。

2.tes网络

在这里插入图片描述
对于视觉提取器,我们使用了一个3D卷积层,然后是一个18层的ResNet和一个时间卷积网络(TCN)。音频提取器采用长短期记忆(LSTM)单元和线性层的组合。
TCN包含一个卷积层、一个Relu激活层和一个层归一化层。
TF-GridNet开发了ACENet和VCENet,它们代表了最先进的语音分离性能。TF-GridNet在STFT域内训练,使用二维卷积和层归一化对复频谱进行编码。每个TF-Grid块包括三个主要模块:帧内频谱模块、子带时间模块和全带自注意模块。
帧内频谱模块将输入R (D×T ×F)解释为T个不同的序列在T上做,并部署BLSTM来捕获每帧的全频带和频谱信息。
子带时间模块将输入R D×T ×F视为F个单独的序列,利用BLSTM捕获每个频率内的时间动态。
全频带自注意模块中,输入被重塑为大小为T × (F × D)的表示,其中多头自注意被用于建模全局依赖关系。

3. 融合网络

在这里插入图片描述
实现了 in-place 卷积作为后处理网络,该架构包括三个主要组件:Inplace Encoder、Frequency-wise LSTM 和 Inplace Decoder。Inplace Encoder 和 Inplace Decoder 都采用了六层 in-place 卷积操作。in-place 卷积采用步幅为 1,从而保留了频谱细节,并促进了对通道间相关性的分析。

4.损失函数

在这里插入图片描述
使用尺度不变的信噪比(硅信噪比)[23]作为损失函数

五、实验评价

1.数据集

VoxCeleb2数据集,选择了48,000个包含800个说话者的话语进行训练,并从118个不同的说话者中选择了36,237个话语进行测试,确保两个集之间没有说话者重叠。 干扰语音与目标语音合并,使用随机的信噪比(SNR)在-10dB到10db之间变化。

2.消融实验

在这里插入图片描述

3.客观评价

作者 提出的框架显著优于SpeakerBeam,在SISNRi、SDRi、PESQ和STOI方面分别提高了1.72 dB、1.63 dB、0.46 dB和3.3%。
在这里插入图片描述
视觉线索被遮挡时,作者进一步评估了提出的框架和基线的鲁棒性。
在这里插入图片描述
不同遮挡程度下的对比。

在这里插入图片描述

4.主观评价


六、结论

作者提出了一个统一的目标说话人提取框架,以克服音频和视觉线索之间的冲突。具体来说,作者利用分而治之的方法,将音频和视觉线索集成到不同的子网中,以利用每个线索提供的独特信息。还引入了一种后处理网络,进一步提取目标语音并抑制干扰。实验证明,作者的网络架构与其他具有竞争力的基线相比,该方法具有优越的性能。

七、知识小结

这篇关于用于目标说话人提取的统一视听线索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115708

相关文章

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

华为OD机试真题-学生方阵-2024年OD统一考试(E卷)

题目描述 学校组织活动,将学生排成一个矩形方阵。 请在矩形方阵中找到最大的位置相连的男生数量。这个相连位置在一个直线上,方向可以是水平的,垂直的,成对角线的或者呈反对角线的。 注:学生个数不会超过10000 输入描述 输入的第一行为矩阵的行数和列数, 接下来的 n行为矩阵元素,元素间用""分隔。 输出描述 输出一个整数,表示矩阵中最长的位

UML- 统一建模语言(Unified Modeling Language)创建项目的序列图及类图

陈科肇 ============= 1.主要模型 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象、属性、操作、关联等概念展示系统的结构和基础,包括类图、对象图、包图。 动态模型:展现系统的内部行为。 包括序列图、活动图、状态图。 因为要创建个人空间项目并不是一个很大的项目,我这里只须关注两种图的创建就可以了,而在开始创建UML图

ROS - C++实现RosBag包回放/提取

文章目录 1. 回放原理2. 回放/提取 多个话题3. 回放/提取数据包,并实时发布 1. 回放原理 #include <ros/ros.h>#include <rosbag/bag.h>#include <std_msgs/String.h>int main(int argc, char** argv){// 初始化ROS节点ros::init(argc, argv,

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户