Llama 3.1 405B:4050亿参数史上最强开源大模型

2024-08-28 18:44

本文主要是介绍Llama 3.1 405B:4050亿参数史上最强开源大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01 概述

Meta公司推出了其最大的开源人工智能模型——Llama 3.1 405B,拥有4050亿个参数,与GPT-4o和Claude 3.5 Sonnet相媲美。该模型在16000个Nvidia H100 GPU上训练而成,现已在云平台上可用,并被应用于WhatsApp和Meta.ai中。它能够处理包括编码和摘要在内的八种语言任务,但仅限于文本。Llama 3.1模型拥有128000个token的上下文窗口,同时Meta还发布了更小规模的模型版本,即Llama 3.1 8B和70B。

在这里插入图片描述

02 关键信息

Meta公司推出了迄今为止最大的开源人工智能模型——Llama 3.1 405B,该模型包含4050亿个参数。虽然它并非史上最大的模型,但确实是近年来规模最大的模型之一,与OpenAI的GPT-4o和Anthropic的Claude 3.5 Sonnet等领先的专有模型形成竞争。该模型使用了16000个Nvidia H100 GPU进行训练,得益于先进的训练技术,现已可在AWS、Azure和Google Cloud等云平台上下载或使用。此外,它也被应用于WhatsApp和Meta.ai,为美国用户提供聊天机器人服务。Llama 3.1 405B能够执行包括编程、解答数学问题和摘要文档在内的多种任务,支持八种语言。然而,它仅限于文本,无法处理基于图像的查询。Meta公司还在研发能够识别图像、视频和生成语音的多模态Llama模型,但这些模型尚未公开发布。**关键特性与性能
**该模型使用相当于7500亿单词的15万亿个token的数据集进行训练。Meta公司为该模型优化了数据整理和质量保证流程。还使用了其他AI模型生成的合成数据来微调Llama 3.1 405B。然而,出于竞争和法律原因,Meta并未公开其训练数据的具体来源。在这里插入图片描述
上下文窗口与工具 Llama 3.1 405B拥有128000个token的更大上下文窗口,使其能够更好地总结更长的文本,并在对话中保持更好的上下文连贯性。Meta还发布了两个较小的模型,Llama 3.1 8B和Llama 3.1 70B,它们共享相同的上下文窗口。这些模型可以使用第三方工具和API来执行回答最新事件问题、解决数学问题和验证代码等任务。性能与许可 Llama 3.1 405B的性能与OpenAI的GPT-4相当,在与GPT-4o和Claude 3.5 Sonnet的对比中显示出混合结果。它在执行代码和生成图表方面表现优异,但在多语言能力和一般推理方面较弱。由于其规模庞大,运行该模型需要大量的硬件资源。Meta公司正在推广其较小的模型用于通用应用程序,并认为Llama 3.1 405B适合模型蒸馏和生成合成数据。在这里插入图片描述
Meta已更新Llama的许可证,允许开发者使用Llama 3.1模型系列的输出来开发第三方AI模型。但是,月活跃用户超过7亿的应用开发者必须向Meta申请特殊许可。在这里插入图片描述

03 使用

您还可以使用 Ollama 下载并使用此模型,您可以通过运行来完成此操作。

ollama run llama3.1

或者从Huggingface下载

https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f

创建一个程序,使用递归回溯算法或深度优先搜索算法生成完美迷宫,并具有可定制的大小和复杂性。

import randomclass Cell:def __init__(self, x, y):self.x = xself.y = yself.walls = [True, True, True, True]  # Top, Right, Bottom, Leftclass Maze:def __init__(self, width, height):self.width = widthself.height = heightself.cells = [[Cell(x, y) for x in range(width)] for y in range(height)]def generate(self):stack = []current_cell = self.cells[0][0]current_cell.walls[3] = False  # Remove left wall to start maze generationwhile True:neighbors = self.get_unvisited_neighbors(current_cell)if neighbors:next_cell = random.choice(neighbors)self.remove_walls(current_cell, next_cell)stack.append(current_cell)current_cell = next_cellelif stack:current_cell = stack.pop()else:breakdef get_unvisited_neighbors(self, cell):x, y = cell.x, cell.yneighbors = []if x > 0 and self.cells[y][x-1].walls[3]:neighbors.append(self.cells[y][x-1])if y < self.height - 1 and self.cells[y+1][x].walls[2]:neighbors.append(self.cells[y+1][x])if x < self.width - 1 and self.cells[y][x+1].walls[1]:neighbors.append(self.cells[y][x+1])if y > 0 and self.cells[y-1][x].walls[0]:neighbors.append(self.cells[y-1][x])return neighborsdef remove_walls(self, cell1, cell2):x1, y1 = cell1.x, cell1.yx2, y2 = cell2.x, cell2.yif x1 < x2:cell1.walls[1] = False  # Remove right wall of first cellcell2.walls[3] = False  # Remove left wall of second cellelif x1 > x2:cell1.walls[3] = False  # Remove left wall of first cellcell2.walls[1] = False  # Remove right wall of second cellelse:  # y1 < y2cell1.walls[0] = False  # Remove top wall of first cellcell2.walls[2] = False  # Remove bottom wall of second cell# Example usage:
maze = Maze(21, 11)  # Size must be odd for a perfect maze
maze.generate()# Print the maze (binary representation)
for row in maze.cells:for cell in row:print(cell.walls[0] * ' ', end='')print(cell.walls[1] * '|', end='')print(cell.walls[2] * '|', end='')print(cell.walls[3] * '-', end='')print()

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

这篇关于Llama 3.1 405B:4050亿参数史上最强开源大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115579

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

基于@RequestParam注解之Spring MVC参数绑定的利器

《基于@RequestParam注解之SpringMVC参数绑定的利器》:本文主要介绍基于@RequestParam注解之SpringMVC参数绑定的利器,具有很好的参考价值,希望对大家有所帮助... 目录@RequestParam注解:Spring MVC参数绑定的利器什么是@RequestParam?@

SpringBoot接收JSON类型的参数方式

《SpringBoot接收JSON类型的参数方式》:本文主要介绍SpringBoot接收JSON类型的参数方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、jsON二、代码准备三、Apifox操作总结一、JSON在学习前端技术时,我们有讲到过JSON,而在

JAVA虚拟机中 -D, -X, -XX ,-server参数使用

《JAVA虚拟机中-D,-X,-XX,-server参数使用》本文主要介绍了JAVA虚拟机中-D,-X,-XX,-server参数使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录一、-D参数二、-X参数三、-XX参数总结:在Java开发过程中,对Java虚拟机(JVM)的启动参数进

无需邀请码!Manus复刻开源版OpenManus下载安装与体验

《无需邀请码!Manus复刻开源版OpenManus下载安装与体验》Manus的完美复刻开源版OpenManus安装与体验,无需邀请码,手把手教你如何在本地安装与配置Manus的开源版OpenManu... Manus是什么?Manus 是 Monica 团队推出的全球首款通用型 AI Agent。Man

解读docker运行时-itd参数是什么意思

《解读docker运行时-itd参数是什么意思》在Docker中,-itd参数组合用于在后台运行一个交互式容器,同时保持标准输入和分配伪终端,这种方式适合需要在后台运行容器并保持交互能力的场景... 目录docker运行时-itd参数是什么意思1. -i(或 --interactive)2. -t(或 --

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot