Llama 3.1 405B:4050亿参数史上最强开源大模型

2024-08-28 18:44

本文主要是介绍Llama 3.1 405B:4050亿参数史上最强开源大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01 概述

Meta公司推出了其最大的开源人工智能模型——Llama 3.1 405B,拥有4050亿个参数,与GPT-4o和Claude 3.5 Sonnet相媲美。该模型在16000个Nvidia H100 GPU上训练而成,现已在云平台上可用,并被应用于WhatsApp和Meta.ai中。它能够处理包括编码和摘要在内的八种语言任务,但仅限于文本。Llama 3.1模型拥有128000个token的上下文窗口,同时Meta还发布了更小规模的模型版本,即Llama 3.1 8B和70B。

在这里插入图片描述

02 关键信息

Meta公司推出了迄今为止最大的开源人工智能模型——Llama 3.1 405B,该模型包含4050亿个参数。虽然它并非史上最大的模型,但确实是近年来规模最大的模型之一,与OpenAI的GPT-4o和Anthropic的Claude 3.5 Sonnet等领先的专有模型形成竞争。该模型使用了16000个Nvidia H100 GPU进行训练,得益于先进的训练技术,现已可在AWS、Azure和Google Cloud等云平台上下载或使用。此外,它也被应用于WhatsApp和Meta.ai,为美国用户提供聊天机器人服务。Llama 3.1 405B能够执行包括编程、解答数学问题和摘要文档在内的多种任务,支持八种语言。然而,它仅限于文本,无法处理基于图像的查询。Meta公司还在研发能够识别图像、视频和生成语音的多模态Llama模型,但这些模型尚未公开发布。**关键特性与性能
**该模型使用相当于7500亿单词的15万亿个token的数据集进行训练。Meta公司为该模型优化了数据整理和质量保证流程。还使用了其他AI模型生成的合成数据来微调Llama 3.1 405B。然而,出于竞争和法律原因,Meta并未公开其训练数据的具体来源。在这里插入图片描述
上下文窗口与工具 Llama 3.1 405B拥有128000个token的更大上下文窗口,使其能够更好地总结更长的文本,并在对话中保持更好的上下文连贯性。Meta还发布了两个较小的模型,Llama 3.1 8B和Llama 3.1 70B,它们共享相同的上下文窗口。这些模型可以使用第三方工具和API来执行回答最新事件问题、解决数学问题和验证代码等任务。性能与许可 Llama 3.1 405B的性能与OpenAI的GPT-4相当,在与GPT-4o和Claude 3.5 Sonnet的对比中显示出混合结果。它在执行代码和生成图表方面表现优异,但在多语言能力和一般推理方面较弱。由于其规模庞大,运行该模型需要大量的硬件资源。Meta公司正在推广其较小的模型用于通用应用程序,并认为Llama 3.1 405B适合模型蒸馏和生成合成数据。在这里插入图片描述
Meta已更新Llama的许可证,允许开发者使用Llama 3.1模型系列的输出来开发第三方AI模型。但是,月活跃用户超过7亿的应用开发者必须向Meta申请特殊许可。在这里插入图片描述

03 使用

您还可以使用 Ollama 下载并使用此模型,您可以通过运行来完成此操作。

ollama run llama3.1

或者从Huggingface下载

https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f

创建一个程序,使用递归回溯算法或深度优先搜索算法生成完美迷宫,并具有可定制的大小和复杂性。

import randomclass Cell:def __init__(self, x, y):self.x = xself.y = yself.walls = [True, True, True, True]  # Top, Right, Bottom, Leftclass Maze:def __init__(self, width, height):self.width = widthself.height = heightself.cells = [[Cell(x, y) for x in range(width)] for y in range(height)]def generate(self):stack = []current_cell = self.cells[0][0]current_cell.walls[3] = False  # Remove left wall to start maze generationwhile True:neighbors = self.get_unvisited_neighbors(current_cell)if neighbors:next_cell = random.choice(neighbors)self.remove_walls(current_cell, next_cell)stack.append(current_cell)current_cell = next_cellelif stack:current_cell = stack.pop()else:breakdef get_unvisited_neighbors(self, cell):x, y = cell.x, cell.yneighbors = []if x > 0 and self.cells[y][x-1].walls[3]:neighbors.append(self.cells[y][x-1])if y < self.height - 1 and self.cells[y+1][x].walls[2]:neighbors.append(self.cells[y+1][x])if x < self.width - 1 and self.cells[y][x+1].walls[1]:neighbors.append(self.cells[y][x+1])if y > 0 and self.cells[y-1][x].walls[0]:neighbors.append(self.cells[y-1][x])return neighborsdef remove_walls(self, cell1, cell2):x1, y1 = cell1.x, cell1.yx2, y2 = cell2.x, cell2.yif x1 < x2:cell1.walls[1] = False  # Remove right wall of first cellcell2.walls[3] = False  # Remove left wall of second cellelif x1 > x2:cell1.walls[3] = False  # Remove left wall of first cellcell2.walls[1] = False  # Remove right wall of second cellelse:  # y1 < y2cell1.walls[0] = False  # Remove top wall of first cellcell2.walls[2] = False  # Remove bottom wall of second cell# Example usage:
maze = Maze(21, 11)  # Size must be odd for a perfect maze
maze.generate()# Print the maze (binary representation)
for row in maze.cells:for cell in row:print(cell.walls[0] * ' ', end='')print(cell.walls[1] * '|', end='')print(cell.walls[2] * '|', end='')print(cell.walls[3] * '-', end='')print()

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

这篇关于Llama 3.1 405B:4050亿参数史上最强开源大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115579

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon