大模型落地难点之结构化输出

2024-08-28 17:28

本文主要是介绍大模型落地难点之结构化输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

应用至上

2023年的世界人工智能大会(WAIC)是“百模大战”,今年WAIC的关键词是“应用至上”。纵观今年论坛热点话题,无论是具身智能还是AI Agent(智能体),都指向以大模型为代表的AI技术在不同场景下的垂直应用。

在这里插入图片描述

从模型输出看大模型应用的两种范式:

输出非结构化数据:问答机器人,智能客服,或者另一个大模型的上游输入,都属于这种范式。技术架构是(领域)大模型+RAG,对输出格式没有要求。

输出结构化数据:当需要把大模型嵌入到工作流中(尤其是原有的工作流),就需要大模型和原工作组件进行交互,在这种情况下,我们期望大模型的输出是结构化数据(Json)。

如何输出json

我们需要在prompt里面提示大模型,具体的提示词类似于:

Wrap the output in json tags. The output should be formatted as a JSON instance that conforms to the JSON schema below. As an example, for the schema {“properties”: {“foo”: {“title”: “Foo”, “description”: “a list of strings”, “type”: “array”, “items”: {“type”: “string”}}}, “required”: [“foo”]} the object {“foo”: [“bar”, “baz”]} is a well-formatted instance of the schema. The object {“properties”: {“foo”: [“bar”, “baz”]}} is not well-formatted. Here is the output schema:

OpenAI的json输出

去年的 DevDay 上,OpenAI 引入了JSON Schema,这是一项为开发者量身定做的工具,旨在帮助他们构建更为可靠的应用程序。尽管 JSON Schema 提高了模型生成有效 JSON 输出的准确性,但它并不保证响应能够完全符合特定的 schema 规范。为了克服这一限制,OpenAI 进一步推出了API的结构化输出特性,确保模型的输出能够精确匹配开发者所提供的 JSON Schema。

将非结构化输入转化为结构化数据是大模型(LLMs)的关键应用之一。开发者们利用 OpenAI API 构建出功能强大的智能助手,这些助手能够通过函数调用来获取数据、回答问题、提取结构化数据进行数据录入,以及构建多步骤的代理工作流程,从而让LLMs能够执行实际任务。

过去,开发者们通过使用开源工具、精心设计的提示以及不断尝试不同的请求,来解决LLMs在结构化数据生成方面的局限,确保模型的输出能够与他们的系统无缝对接。

现在,结构化输出功能通过强制模型遵循开发者指定的模式,并通过对模型进行更深入的复杂模式理解训练,有效地解决了这些问题。

Corner/Edge Case

考虑边缘情况的重要性:

边缘情况的考虑是确保系统鲁棒性的关键。在LeetCode等编程挑战中,全面性是区分优秀解决方案与普通方案的分水岭。同样,在将大型模型集成到工作流程中时,我们必须预见并处理所有可能的异常情况。

大型模型的概率本质:

尽管大型模型可能拥有高达99.99%的准确率,但概率论告诉我们,随着运行次数的增加,即使是极小的失败几率也会导致失败的发生。在一万次的运行中,至少有一次失败是不可避免的。

对大型模型输出的期望:

在我们的应用场景中,我们依赖大型模型提供符合预定义JSON Schema的输出。任何与预期不符的返回结果都可能导致工作流程的中断,影响整体的稳定性和效率。

错误的类型:

错误的类型可能多样,我们要主要关注以下几种情况:

  • JSON的合法性问题:非法的JSON结构可能导致解析错误,影响数据的进一步处理;

  • JSON层级问题:大型模型有时可能会在没有明确指示的情况下增加或减少嵌套层级,这会破坏预期的数据结构;

  • JSON key的问题:key的结果不符合约定,或者在value缺失的情况下,相应的key也可能意外地消失;

  • JSON key-value对应错误:当key相似时,可能会出现key-value错配的情况,即value被错误地关联到了错误的key上。

解决方案:

这些情况都有可能让工作流失败,所以一个好的方式是在给出结果前reflection下,保险的方式是做些校验

  • reflection:在模型输出前,我们可以通过reflection的方式,检查模型输出的结构,确保其符合预期的JSON Schema;这种方式适合对时延要求不高的场景;

  • Hard code校验:在模型输出后,我们可以通过校验的方式,检查模型输出的结构,确保其符合预期的JSON Schema;这种方式适合对时延要求较高的场景。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

这篇关于大模型落地难点之结构化输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115409

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python使用Colorama库美化终端输出的操作示例

《Python使用Colorama库美化终端输出的操作示例》在开发命令行工具或调试程序时,我们可能会希望通过颜色来区分重要信息,比如警告、错误、提示等,而Colorama是一个简单易用的Python库... 目录python Colorama 库详解:终端输出美化的神器1. Colorama 是什么?2.

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费