【扩散模型(六)】IP-Adapter 是如何训练的?2 源码篇(IP-Adapter Plus)

2024-08-28 16:20

本文主要是介绍【扩散模型(六)】IP-Adapter 是如何训练的?2 源码篇(IP-Adapter Plus),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录

  • 【扩散模型(二)】IP-Adapter 从条件分支的视角,快速理解相关的可控生成研究
  • 【扩散模型(三)】IP-Adapter 源码详解1-训练输入 介绍了训练代码中的 image prompt 的输入部分,即 img projection 模块。
  • 【扩散模型(四)】IP-Adapter 源码详解2-训练核心(cross-attention)详细介绍 IP-Adapter 训练代码的核心部分,即插入 Unet 中的、针对 Image prompt 的 cross-attention 模块。
  • 【扩散模型(五)】IP-Adapter 源码详解3-推理代码 详细介绍 IP-Adapter 推理过程代码。
  • 【可控图像生成系列论文(四)】IP-Adapter 具体是如何训练的?1公式篇
  • 本文则以 IP-Adapter Plus 训练代码为例,进行详细介绍。

文章目录

  • 系列文章目录
  • 整体训练框架
  • 一、训了哪些部分?
      • 第一块 - image_proj_model
      • 第二块 - adapter_modules
  • 二、训练目标


整体训练框架

在这里插入图片描述

一、训了哪些部分?

本文以原仓库 1 的 /path/IP-Adapter/tutorial_train_plus.py 为例,该文件为 SD1.5 IP-Adapter Plus 的训练代码。

从以下代码可以看出,IPAdapter 主要由 unet, image_proj_model, adapter_modules 3 个部分组成,而权重需要被优化的(训练到的)只有 ip_adapter.image_proj_model.parameters(), 和 ip_adapter.adapter_modules.parameters() 。

	ip_adapter = IPAdapter(unet, image_proj_model, adapter_modules, args.pretrained_ip_adapter_path)# optimizerparams_to_opt = itertools.chain(ip_adapter.image_proj_model.parameters(),  ip_adapter.adapter_modules.parameters())optimizer = torch.optim.AdamW(params_to_opt, lr=args.learning_rate, weight_decay=args.weight_decay)...# Prepare everything with our `accelerator`.ip_adapter, optimizer, train_dataloader = accelerator.prepare(ip_adapter, optimizer, train_dataloader)

第一块 - image_proj_model

在 IP-Adapter Plus 中,采用的是 Resampler 作为img embedding 到 ip_tokens 的映射网络,对图像(image prompt)中信息的抽取更加细粒度。其他模块都不需要梯度下降,如下代码所示。

	# freeze parameters of models to save more memoryunet.requires_grad_(False)vae.requires_grad_(False)text_encoder.requires_grad_(False)image_encoder.requires_grad_(False)#ip-adapter-plusimage_proj_model = Resampler(dim=unet.config.cross_attention_dim,depth=4,dim_head=64,heads=12,num_queries=args.num_tokens,embedding_dim=image_encoder.config.hidden_size,output_dim=unet.config.cross_attention_dim,ff_mult=4)...

第二块 - adapter_modules

Decoupled cross-attention 则在以下代码中进行初始化,关键是在特定的 unet 层中进行替换,详细位置可以参考前文中的图片,本文的重点是后续训练的实现。

	# init adapter modulesattn_procs = {}unet_sd = unet.state_dict()for name in unet.attn_processors.keys():cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dimif name.startswith("mid_block"):hidden_size = unet.config.block_out_channels[-1]elif name.startswith("up_blocks"):block_id = int(name[len("up_blocks.")])hidden_size = list(reversed(unet.config.block_out_channels))[block_id]elif name.startswith("down_blocks"):block_id = int(name[len("down_blocks.")])hidden_size = unet.config.block_out_channels[block_id]if cross_attention_dim is None:attn_procs[name] = AttnProcessor()else:layer_name = name.split(".processor")[0]weights = {"to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],"to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],}attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, num_tokens=args.num_tokens)attn_procs[name].load_state_dict(weights)unet.set_attn_processor(attn_procs)adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())

二、训练目标

每个 epoch 是遍历完一整个 dataset,我们直接从每个训练步的循环中来看:

  • latents 是通过 vae 将输入的 image prompt 压到了隐空间(latent space)中。
  • 准备相应的 noise 和 timesteps ,再通过 noise_scheduler 来制作出 noisy_latents。
        for step, batch in enumerate(train_dataloader):load_data_time = time.perf_counter() - beginwith accelerator.accumulate(ip_adapter):# Convert images to latent spacewith torch.no_grad():latents = vae.encode(batch["images"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample()latents = latents * vae.config.scaling_factor# Sample noise that we'll add to the latentsnoise = torch.randn_like(latents)bsz = latents.shape[0]# Sample a random timestep for each imagetimesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)timesteps = timesteps.long()# Add noise to the latents according to the noise magnitude at each timestep# (this is the forward diffusion process)noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
  • clip_images 和 drop_image_embed 是在准备数据的过程中,做了一个随机 drop 的方式进行数据增强,提升模型鲁棒性。
    • 数据增强:通过随机丢弃一些图像,模型被迫学习从剩余的图像中提取信息,这可以增加模型的泛化能力。
    • 模型鲁棒性:训练模型以处理不完整的数据,使其在实际应用中对缺失数据更加鲁棒。
     clip_images = []for clip_image, drop_image_embed in zip(batch["clip_images"], batch["drop_image_embeds"]):if drop_image_embed == 1:clip_images.append(torch.zeros_like(clip_image))else:clip_images.append(clip_image)clip_images = torch.stack(clip_images, dim=0)with torch.no_grad():image_embeds = image_encoder(clip_images.to(accelerator.device, dtype=weight_dtype), output_hidden_states=True).hidden_states[-2]with torch.no_grad():encoder_hidden_states = text_encoder(batch["text_input_ids"].to(accelerator.device))[0]

  1. https://github.com/tencent-ailab/IP-Adapter/tree/main ↩︎

这篇关于【扩散模型(六)】IP-Adapter 是如何训练的?2 源码篇(IP-Adapter Plus)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115272

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL