本文主要是介绍使用大津法二值化灰度图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
二值化是图像分割的一种方法,即将256个亮度等级的灰度图像通过适当的阈值选取,使得所有小于该阈值的像素置为一个值,所有大于该阈值的像素置为另一个值,最终得到一张非黑即白的二值图像。可见阈值的选择非常重要,不同的阈值,运算后得到的结果图像是完全不同的。对于多张图像,如何选取每一张图像合适的阈值呢?采用主观判定显然不太现实,合理的选择应该是采用一种自适应的阈值计算方法。自适应阈值计算,我主要看了 大津法(维基百科) ,即最大类间方差法,由日本学者大津展之于1979年提出,简称Otsu,算法基本思想是:设使用某一个阈值将灰度图像根据灰度大小,分成前景部分和背景部分,在这两部分“类间差异最大”(也即“类内差异最小”)的时候,得到的阈值即是最优的二值化阈值。算法原理维基百科讲的很详细,这里不再赘述,只是配的程序实在不敢恭维,或许也就计算机能明白。
大津法c++实现:
#include "stdafx.h"
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>using namespace cv;// 大津法求阈值
uchar OtsuThreshold(Mat &imgGray)
{ int width = imgGray.cols;int height = imgGray.rows;int histData[256] = { 0 };// 直方图统计uchar *pImg = imgGray.data;for (int i = 0; i < height; i++){for (int j = 0; j < width; j++){histData[pImg[j]]++;}pImg += imgGray.step;}// 计算像素总数及灰度总和int totalCount = width * height;double graySum = 0.0;for (int i = 0; i < 256; i++){graySum += i * histData[i];}uchar threshold = 0;int backCount = 0, foreCount = 0;double backGraySum = 0.0, varMax = -999.9;for (int i = 0; i < 256; i++){// 背景像素数backCount += histData[i];if (backCount == 0){continue;}// 前景像素数foreCount = totalCount - backCount;if (foreCount == 0){break;}// 背景像素灰度总和backGraySum += double(i * histData[i]);// 背景/前景均值double backMean = backGraySum / backCount;double foreMean = (graySum - backGraySum) / foreCount;// 计算类间差异double varBetween = backCount * foreCount * (backMean - foreMean) * (backMean - foreMean);// 最大值位置,即阈值if (varBetween > varMax){varMax = varBetween;threshold = i;}}return threshold;
}int main(int argc, _TCHAR* argv[])
{Mat img = imread("image\\snow.jpg");imshow("src", img);// 计算阈值Mat imgGray;cvtColor(img, imgGray, CV_BGR2GRAY);uchar threshold = OtsuThreshold(imgGray);// 二值化int width = imgGray.cols;int height = imgGray.rows;uchar *pImg = imgGray.data;for (int i = 0; i < height; i++){ for (int j = 0; j < width; j++){pImg[j] = (pImg[j] > threshold) ? 255 : 0;}pImg += imgGray.step;}imshow("result", imgGray);waitKey();return 0;
}
运行结果:
工程下载链接:http://download.csdn.net/detail/u013085897/6774265
程序基于vs2005 + opencv210实现,下载工程后,如果与自己使用的opencv版本不一致,则需要对工程进行简单配置才能正确运行。
这篇关于使用大津法二值化灰度图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!