使用大津法二值化灰度图像

2024-08-28 14:18

本文主要是介绍使用大津法二值化灰度图像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       二值化是图像分割的一种方法,即将256个亮度等级的灰度图像通过适当的阈值选取,使得所有小于该阈值的像素置为一个值,所有大于该阈值的像素置为另一个值,最终得到一张非黑即白的二值图像。可见阈值的选择非常重要,不同的阈值,运算后得到的结果图像是完全不同的。对于多张图像,如何选取每一张图像合适的阈值呢?采用主观判定显然不太现实,合理的选择应该是采用一种自适应的阈值计算方法。自适应阈值计算,我主要看了 大津法(维基百科) ,即最大类间方差法,由日本学者大津展之于1979年提出,简称Otsu,算法基本思想是:设使用某一个阈值将灰度图像根据灰度大小,分成前景部分和背景部分,在这两部分“类间差异最大”(也即“类内差异最小”)的时候,得到的阈值即是最优的二值化阈值。算法原理维基百科讲的很详细,这里不再赘述,只是配的程序实在不敢恭维,或许也就计算机能明白。
       大津法c++实现:

#include "stdafx.h"
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>using namespace cv;// 大津法求阈值
uchar OtsuThreshold(Mat &imgGray)
{  	int width  = imgGray.cols;int height = imgGray.rows;int histData[256] = { 0 };// 直方图统计uchar *pImg = imgGray.data;for (int i = 0; i < height; i++){for (int j = 0; j < width; j++){histData[pImg[j]]++;}pImg += imgGray.step;}// 计算像素总数及灰度总和int totalCount = width * height;double graySum = 0.0;for (int i = 0; i < 256; i++){graySum += i * histData[i];}uchar threshold = 0;int backCount = 0, foreCount = 0;double backGraySum = 0.0, varMax = -999.9;for (int i = 0; i < 256; i++){// 背景像素数backCount += histData[i];if (backCount == 0){continue;}// 前景像素数foreCount = totalCount - backCount;if (foreCount == 0){break;}// 背景像素灰度总和backGraySum += double(i * histData[i]);// 背景/前景均值double backMean = backGraySum / backCount;double foreMean = (graySum - backGraySum) / foreCount;// 计算类间差异double varBetween = backCount * foreCount * (backMean - foreMean) * (backMean - foreMean);// 最大值位置,即阈值if (varBetween > varMax){varMax = varBetween;threshold = i;}}return threshold;
}int main(int argc, _TCHAR* argv[])
{Mat img = imread("image\\snow.jpg");imshow("src", img);// 计算阈值Mat imgGray;cvtColor(img, imgGray, CV_BGR2GRAY);uchar threshold = OtsuThreshold(imgGray);// 二值化int width  = imgGray.cols;int height = imgGray.rows;uchar *pImg = imgGray.data;for (int i = 0; i < height; i++){  for (int j = 0; j < width; j++){pImg[j] = (pImg[j] > threshold) ? 255 : 0;}pImg += imgGray.step;}imshow("result", imgGray);waitKey();return 0;
}
运行结果:


工程下载链接:http://download.csdn.net/detail/u013085897/6774265

程序基于vs2005 + opencv210实现,下载工程后,如果与自己使用的opencv版本不一致,则需要对工程进行简单配置才能正确运行。



这篇关于使用大津法二值化灰度图像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115000

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定