Pytorch中高维度张量理解

2024-08-28 14:12

本文主要是介绍Pytorch中高维度张量理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytorch中高维度张量理解

  • 创建一个tensor
    • 获取第一个维度的第0个元素:
    • 获取第二个维度的第0个元素:
    • 获取第三个维度的第0个元素:
    • 获取第四个维度的第0个元素:
    • 其他情况

创建一个tensor

tensor = torch.rand(3,5,3,2)

结果如下:


```python
tensor([[[[0.3844, 0.9532],[0.0787, 0.4187],[0.4144, 0.9552]],[[0.0713, 0.5281],[0.0230, 0.8433],[0.1113, 0.5927]],[[0.0040, 0.1001],[0.3837, 0.6088],[0.1752, 0.3184]],[[0.2762, 0.8417],[0.5438, 0.4406],[0.0529, 0.5175]],[[0.1038, 0.7948],[0.4991, 0.5155],[0.4651, 0.8095]]],[[[0.0377, 0.0249],[0.2440, 0.8501],[0.1176, 0.7303]],[[0.9979, 0.6738],[0.2486, 0.4152],[0.5896, 0.8879]],[[0.3499, 0.6918],[0.4399, 0.5192],[0.1783, 0.5962]],[[0.3021, 0.4297],[0.9558, 0.0046],[0.9994, 0.1249]],[[0.8348, 0.7249],[0.1525, 0.3867],[0.8992, 0.6996]]],[[[0.5918, 0.9135],[0.8205, 0.5719],[0.8127, 0.3856]],[[0.1870, 0.6190],[0.2991, 0.9424],[0.5405, 0.4200]],[[0.9396, 0.8072],[0.0319, 0.6586],[0.4849, 0.6193]],[[0.5268, 0.2794],[0.7877, 0.9502],[0.6553, 0.9574]],[[0.4079, 0.4648],[0.6375, 0.8829],[0.6280, 0.1463]]]])

现在我想获取

tensor[0,0,0,0]

获取第一个维度的第0个元素:

		[[[0.3844, 0.9532],[0.0787, 0.4187],[0.4144, 0.9552]],[[0.0713, 0.5281],[0.0230, 0.8433],[0.1113, 0.5927]],[[0.0040, 0.1001],[0.3837, 0.6088],[0.1752, 0.3184]],[[0.2762, 0.8417],[0.5438, 0.4406],[0.0529, 0.5175]],[[0.1038, 0.7948],[0.4991, 0.5155],[0.4651, 0.8095]]]

获取第二个维度的第0个元素:

		[[0.3844, 0.9532],[0.0787, 0.4187],[0.4144, 0.9552]]

获取第三个维度的第0个元素:

		[0.3844, 0.9532]

获取第四个维度的第0个元素:

		0.3844

其他情况

tensor[-1]
获取第1个维度的最后一个元素:

		[[[0.5918, 0.9135],[0.8205, 0.5719],[0.8127, 0.3856]],[[0.1870, 0.6190],[0.2991, 0.9424],[0.5405, 0.4200]],[[0.9396, 0.8072],[0.0319, 0.6586],[0.4849, 0.6193]],[[0.5268, 0.2794],[0.7877, 0.9502],[0.6553, 0.9574]],[[0.4079, 0.4648],[0.6375, 0.8829],[0.6280, 0.1463]]]

tensor[0,1]
获取第1个维度的第0个元素 :

		[[[0.3844, 0.9532],[0.0787, 0.4187],[0.4144, 0.9552]],[[0.0713, 0.5281],[0.0230, 0.8433],[0.1113, 0.5927]],[[0.0040, 0.1001],[0.3837, 0.6088],[0.1752, 0.3184]],[[0.2762, 0.8417],[0.5438, 0.4406],[0.0529, 0.5175]],[[0.1038, 0.7948],[0.4991, 0.5155],[0.4651, 0.8095]]]

第2个维度的第1个元素:

 		[[0.0713, 0.5281],[0.0230, 0.8433],[0.1113, 0.5927]]

tensor[:,1,0,1]
获取第1个维度的所有元素:

		[[[0.3844, 0.9532],[0.0787, 0.4187],[0.4144, 0.9552]],[[0.0713, 0.5281],[0.0230, 0.8433],[0.1113, 0.5927]],[[0.0040, 0.1001],[0.3837, 0.6088],[0.1752, 0.3184]],[[0.2762, 0.8417],[0.5438, 0.4406],[0.0529, 0.5175]],[[0.1038, 0.7948],[0.4991, 0.5155],[0.4651, 0.8095]]],[[[0.0377, 0.0249],[0.2440, 0.8501],[0.1176, 0.7303]],[[0.9979, 0.6738],[0.2486, 0.4152],[0.5896, 0.8879]],[[0.3499, 0.6918],[0.4399, 0.5192],[0.1783, 0.5962]],[[0.3021, 0.4297],[0.9558, 0.0046],[0.9994, 0.1249]],[[0.8348, 0.7249],[0.1525, 0.3867],[0.8992, 0.6996]]],[[[0.5918, 0.9135],[0.8205, 0.5719],[0.8127, 0.3856]],[[0.1870, 0.6190],[0.2991, 0.9424],[0.5405, 0.4200]],[[0.9396, 0.8072],[0.0319, 0.6586],[0.4849, 0.6193]],[[0.5268, 0.2794],[0.7877, 0.9502],[0.6553, 0.9574]],[[0.4079, 0.4648],[0.6375, 0.8829],[0.6280, 0.1463]]]

第2个维度的第1个元素:

 		[[0.0713, 0.5281],[0.0230, 0.8433],[0.1113, 0.5927]][[0.9979, 0.6738],[0.2486, 0.4152],[0.5896, 0.8879]][[0.1870, 0.6190],[0.2991, 0.9424],[0.5405, 0.4200]]

第3个维度的第0个元素:

		[0.0713, 0.5281][0.9979, 0.6738][0.1870, 0.6190]

第4个维度的第1个元素:

		 0.52810.67380.6190

最终结果:

tensor([0.5281, 0.6738, 0.6190])

这篇关于Pytorch中高维度张量理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114992

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分