poj 2154 Color(polya计数 + 欧拉函数优化)

2024-08-28 10:32

本文主要是介绍poj 2154 Color(polya计数 + 欧拉函数优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://poj.org/problem?id=2154


大致题意:由n个珠子,n种颜色,组成一个项链。要求不同的项链数目,旋转后一样的属于同一种,结果模p。


n个珠子应该有n种旋转置换,每种置换的循环个数为gcd(i,n)。如果直接枚举i,显然不行。但是我们可以缩小枚举的数目。改为枚举每个循环节的长度L,那么相应的循环节数是n/L。所以我们只需求出每个L有多少个i满足gcd(i,n)= n/L,就得到了循环节数为n/L的个数。重点就是求出这样的i的个数。


令cnt = gcd(i,n) = n/L;

那么cnt | i,令i = cnt*t(0 <= t <= L);

又 n = cnt * L ;

所以gcd(i,n) = gcd( cnt*t, cnt*L) = cnt,

满足上式的条件是 gcd(t,L) = 1。

而这样的t 有Eular(L)个。

因此循环节个数是n/L的置换个数有Eular(L)个。

参考博客:http://blog.csdn.net/tsaid/article/details/7366708


代码中求欧拉函数是基于素数筛的,素数只需筛到sqrt(1e9)即可。我在筛素数的同时递推的记录了sqrt(1e9)以内的Eular(n),用phi[]表示。这样会快那么一点点。


#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#define LL long long
#define _LL __int64
#define eps 1e-8
#define PI acos(-1.0)
using namespace std;const int maxn = 35000;
const int INF = 0x3f3f3f3f;int n,p;
int ans;
int prime[maxn];
int flag[maxn];
int prime_num;
int phi[maxn];int mod_exp(int a, int b, int c)
{int res = 1;a = a%c;while(b){if(b&1)res = (res*a)%c;a = (a*a)%c;b >>= 1;}return res;
}//素数筛并记录maxn以内的Eular(n),用phi[]表示
void get_prime()
{memset(flag,0,sizeof(flag));prime_num = 0;phi[1] = 1;for(int i = 2; i <= maxn; i++){if(!flag[i]){prime[++prime_num] = i;phi[i] = i-1;}for(int j = 1; j <= prime_num && i*prime[j] <= maxn; j++){flag[i*prime[j]] = 1;if(i % prime[j] == 0)phi[i*prime[j]] = phi[i] * prime[j];else phi[i*prime[j]] = phi[i] * (prime[j]-1);}}
}int Eular(int n)
{if(n < maxn)return phi[n] % p;//求大于maxn的Eular(n)int res = n;for(int i = 1; prime[i]*prime[i] <= n && i <= prime_num; i++){if(n % prime[i] == 0){res -= res/prime[i];while(n%prime[i] == 0)n = n/prime[i];}}if(n > 1)res -= res/n;return res%p;
}int main()
{int test;get_prime();scanf("%d",&test);while(test--){scanf("%d %d",&n,&p);ans = 0;for(int l = 1; l*l <= n; l++){if(l*l == n){ans = (ans + Eular(l)*mod_exp(n,l-1,p))%p;}else if(n%l == 0) //循环节长度为l,那么n/l也是循环节长度{ans = (ans + Eular(l)*mod_exp(n,n/l-1,p))%p;ans = (ans + Eular(n/l)*mod_exp(n,l-1,p))%p;}}printf("%d\n",ans);}return 0;
}


这篇关于poj 2154 Color(polya计数 + 欧拉函数优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114509

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、