poj 2154 Color(polya计数 + 欧拉函数优化)

2024-08-28 10:32

本文主要是介绍poj 2154 Color(polya计数 + 欧拉函数优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://poj.org/problem?id=2154


大致题意:由n个珠子,n种颜色,组成一个项链。要求不同的项链数目,旋转后一样的属于同一种,结果模p。


n个珠子应该有n种旋转置换,每种置换的循环个数为gcd(i,n)。如果直接枚举i,显然不行。但是我们可以缩小枚举的数目。改为枚举每个循环节的长度L,那么相应的循环节数是n/L。所以我们只需求出每个L有多少个i满足gcd(i,n)= n/L,就得到了循环节数为n/L的个数。重点就是求出这样的i的个数。


令cnt = gcd(i,n) = n/L;

那么cnt | i,令i = cnt*t(0 <= t <= L);

又 n = cnt * L ;

所以gcd(i,n) = gcd( cnt*t, cnt*L) = cnt,

满足上式的条件是 gcd(t,L) = 1。

而这样的t 有Eular(L)个。

因此循环节个数是n/L的置换个数有Eular(L)个。

参考博客:http://blog.csdn.net/tsaid/article/details/7366708


代码中求欧拉函数是基于素数筛的,素数只需筛到sqrt(1e9)即可。我在筛素数的同时递推的记录了sqrt(1e9)以内的Eular(n),用phi[]表示。这样会快那么一点点。


#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#define LL long long
#define _LL __int64
#define eps 1e-8
#define PI acos(-1.0)
using namespace std;const int maxn = 35000;
const int INF = 0x3f3f3f3f;int n,p;
int ans;
int prime[maxn];
int flag[maxn];
int prime_num;
int phi[maxn];int mod_exp(int a, int b, int c)
{int res = 1;a = a%c;while(b){if(b&1)res = (res*a)%c;a = (a*a)%c;b >>= 1;}return res;
}//素数筛并记录maxn以内的Eular(n),用phi[]表示
void get_prime()
{memset(flag,0,sizeof(flag));prime_num = 0;phi[1] = 1;for(int i = 2; i <= maxn; i++){if(!flag[i]){prime[++prime_num] = i;phi[i] = i-1;}for(int j = 1; j <= prime_num && i*prime[j] <= maxn; j++){flag[i*prime[j]] = 1;if(i % prime[j] == 0)phi[i*prime[j]] = phi[i] * prime[j];else phi[i*prime[j]] = phi[i] * (prime[j]-1);}}
}int Eular(int n)
{if(n < maxn)return phi[n] % p;//求大于maxn的Eular(n)int res = n;for(int i = 1; prime[i]*prime[i] <= n && i <= prime_num; i++){if(n % prime[i] == 0){res -= res/prime[i];while(n%prime[i] == 0)n = n/prime[i];}}if(n > 1)res -= res/n;return res%p;
}int main()
{int test;get_prime();scanf("%d",&test);while(test--){scanf("%d %d",&n,&p);ans = 0;for(int l = 1; l*l <= n; l++){if(l*l == n){ans = (ans + Eular(l)*mod_exp(n,l-1,p))%p;}else if(n%l == 0) //循环节长度为l,那么n/l也是循环节长度{ans = (ans + Eular(l)*mod_exp(n,n/l-1,p))%p;ans = (ans + Eular(n/l)*mod_exp(n,l-1,p))%p;}}printf("%d\n",ans);}return 0;
}


这篇关于poj 2154 Color(polya计数 + 欧拉函数优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114509

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k