55.基于IIC协议的EEPROM驱动控制(2)

2024-08-28 09:12
文章标签 协议 驱动 控制 iic eeprom

本文主要是介绍55.基于IIC协议的EEPROM驱动控制(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        升腾A7pro的EEPROM芯片为24C64芯片,器件地址为1010_011。

        (1)Visio整体设计视图(IIC_SCL为250KHz,IIC_CLK为1MHz,addr_num为1,地址字节数为2字节,addr_num为0,地址字节数为1字节):

(2)IIC_ctrl模块状态转移图:

(3)按键消抖模块代码及注释解析:

module key_filter(clk,reset_n,key_in,key_p_flag,key_r_flag,key_state);input clk;input reset_n;input key_in;output reg key_p_flag;output reg key_r_flag;output reg key_state;reg key_in1;reg key_in2;reg key_in3;reg [3:0]STATE;//抖动时间往往小于20ms,20ms = 20_000_000ns = 20ns * 1_000_000;   (1_000_000)D = (1111_0100_0010_0100_0000)B   需要一个20位的寄存器,用于计数reg [19:0]cnt_20ms;reg en_cnt_20ms;wire podge;wire nedge;wire arrive_time_20ms;//状态设计parameter IDLE      = 4'b0001;          //释放稳定状态parameter P_SHAKE   = 4'b0010;          //按下抖动状态parameter DOWN      = 4'b0100;          //按下稳定状态parameter R_SHAKE   = 4'b1000;          //释放抖动状态parameter CNT_MAX   = 20'd999_999;//异步输入key_in 信号的同步化————“打两拍”always@(posedge clk)beginkey_in1 <= key_in;key_in2 <= key_in1;end//上升沿、下降沿设计always@(posedge clk)key_in3 <= key_in2;assign podge = key_in2  &&  (!key_in3);     //上升沿assign nedge = (!key_in2)  &&  key_in3;     //下降沿//20ms计数器模块设计    always@(posedge clk or negedge reset_n)if(!reset_n)cnt_20ms <= 20'd0;else if(en_cnt_20ms &&(cnt_20ms == CNT_MAX))cnt_20ms <= 20'd0;else if(en_cnt_20ms)cnt_20ms <= cnt_20ms + 20'd1;else cnt_20ms <= 20'd0;//计满20ms信号设计           assign arrive_time_20ms = (cnt_20ms == CNT_MAX);//状态机主程序设计always@(posedge clk or negedge reset_n)if(!reset_n)beginkey_r_flag  <= 1'd0;key_p_flag  <= 1'd0;key_state   <= 1'd1;STATE       <= IDLE;en_cnt_20ms <= 1'd0;endelse begincase(STATE)IDLE:beginkey_r_flag <= 1'd0;key_state  <= 1'd1;if(nedge)beginSTATE <= P_SHAKE;en_cnt_20ms <= 1'd1;endelse STATE <= STATE;endP_SHAKE:beginif(arrive_time_20ms)beginSTATE <= DOWN;en_cnt_20ms <= 1'd0;key_p_flag <= 1'd1;key_state <= 1'd0;endelse if(podge)beginSTATE <= IDLE;en_cnt_20ms <= 1'd0;endelse STATE <= STATE;  endDOWN:beginkey_p_flag <= 1'd0;key_state <= 1'd0;if(podge)beginSTATE <= R_SHAKE;en_cnt_20ms <= 1'd1;endelse STATE <= STATE;          endR_SHAKE:beginif(arrive_time_20ms)beginSTATE <= IDLE;en_cnt_20ms <= 1'd0;key_r_flag <= 1'd1;key_state  <= 1'd1;endelse if(nedge)beginSTATE <= DOWN;en_cnt_20ms <= 1'd0;endelse STATE <= STATE; enddefault:beginkey_r_flag <= 1'd0;key_p_flag <= 1'd0;key_state  <= 1'd1;STATE      <= IDLE;endendcaseendendmodule

(4)IIC_ctrl模块Verilog代码:

module IIC_ctrl(input   wire            clk         ,input   wire            reset_n     ,input   wire            IIC_start   ,input   wire            wr_en       ,input   wire            rd_en       ,input   wire    [15:0]  byte_addr   ,input   wire    [7:0]   wr_data     ,input   wire            addr_num    ,output  reg             IIC_SCL     ,inout   wire            IIC_SDA     ,output  reg             IIC_clk     ,output  reg             IIC_end     ,output  reg     [7:0]   rd_data     );reg     [4:0]       cnt_1M          ;      //计数最大值是25  一个五位宽的寄存器足以胜任计数任务reg     [15:0]      state           ;reg     [1:0]       IIC_clk_cnt     ;reg                 EN_IIC_clk_cnt  ;reg     [2:0]       bit_cnt         ;reg                 ack             ;reg                 sda_out         ;reg     [7:0]       rd_data_reg     ;wire                sda_in          ;wire                EN_IIC_SDA      ;parameter IDLE        =  16'b0000_0000_0000_0001    ;       //空闲状态parameter START       =  16'b0000_0000_0000_0010    ;       //发送开始信号parameter SEND_D_A    =  16'b0000_0000_0000_0100    ;       //发送控制命令(器件地址+写操作)   {7'b1010_011,1'b0}parameter ACK_1       =  16'b0000_0000_0000_1000    ;       //等待响应 parameter SEND_B_H    =  16'b0000_0000_0001_0000    ;       //发送存储地址高8位  parameter ACK_2       =  16'b0000_0000_0010_0000    ;       //等待响应parameter SEND_B_L    =  16'b0000_0000_0100_0000    ;       //发送存储地址低8位parameter ACK_3       =  16'b0000_0000_1000_0000    ;       //等待响应parameter WR_DATA     =  16'b0000_0001_0000_0000    ;       //写入单比特数据   parameter ACK_4       =  16'b0000_0010_0000_0000    ;       //等待响应parameter START_2     =  16'b0000_0100_0000_0000    ;       //发送开始信号parameter SEND_RD_A   =  16'b0000_1000_0000_0000    ;       //发送控制命令(器件地址+读操作)   {7'b0101_011,1'b1} parameter ACK_5       =  16'b0001_0000_0000_0000    ;       //等待响应parameter RD_DATA     =  16'b0010_0000_0000_0000    ;       //读出单比特数据parameter NO_ACK      =  16'b0100_0000_0000_0000    ;       //等待无响应信号parameter END         =  16'b1000_0000_0000_0000    ;       //结束单比特传输parameter DEVICE_ADD  =  7'b1010_011 ;                      //EEPROM器件地址设定/*-----------IIC_clk生成模块--------------------*/
//IIC_clk 频率要求1MHz,而系统时钟clk频率为50MHz,半个周期需要计数25次(5位寄存器)always@(posedge clk or negedge reset_n)if(!reset_n)cnt_1M <= 5'd0;else if(cnt_1M == 5'd24)cnt_1M <= 5'd0;else cnt_1M <= cnt_1M + 5'd1;always@(posedge clk or negedge reset_n)if(!reset_n)IIC_clk <= 1'd0;else if(cnt_1M == 5'd24)IIC_clk <= ~IIC_clk;else IIC_clk <= IIC_clk;/*----------------状态机设计-----------------------*/  always@(posedge IIC_clk or negedge reset_n)if(!reset_n)state <= IDLE;else begincase(state)IDLE      :if(IIC_start)state <= START;else state <= state;START     : if(IIC_clk_cnt == 2'd3)state <= SEND_D_A;else state <= state;           SEND_D_A  : if((bit_cnt == 3'd7) && (IIC_clk_cnt == 2'd3))state <= ACK_1;else state <= state;ACK_1     : if((IIC_clk_cnt == 2'd3) && (ack == 1'd0) &&  (addr_num == 1'd1))state <= SEND_B_H;else if((IIC_clk_cnt == 2'd3) && (ack == 1'd0) && (addr_num == 1'd0))state <= SEND_B_L;else state <= state;  SEND_B_H  : if((bit_cnt == 3'd7) && (IIC_clk_cnt == 2'd3))state <= ACK_2;else state <= state;ACK_2     : if((IIC_clk_cnt == 2'd3) && (ack == 1'd0))state <= SEND_B_L;else state <= state;  SEND_B_L  : if((bit_cnt == 3'd7) && (IIC_clk_cnt == 2'd3))state <= ACK_3;else state <= state;ACK_3     : if((IIC_clk_cnt == 2'd3) && (ack == 1'd0) && (wr_en == 1'd1))state <= WR_DATA;else if((IIC_clk_cnt == 2'd3) && (ack == 1'd0) && (rd_en == 1'd1))state <= START_2;else state <= state;WR_DATA   : if((bit_cnt == 3'd7) && (IIC_clk_cnt == 2'd3))state <= ACK_4;else state <= state;ACK_4     : if((IIC_clk_cnt == 2'd3) && (ack == 1'd0))state <= END;else state <= state; START_2   : if(IIC_clk_cnt == 2'd3)state <= SEND_RD_A;else state <= state; SEND_RD_A : if((bit_cnt == 3'd7) && (IIC_clk_cnt == 2'd3))state <= ACK_5;else state <= state;ACK_5     : if((IIC_clk_cnt == 2'd3) && (ack == 1'd0))state <= RD_DATA;else state <= state; RD_DATA   : if((bit_cnt == 3'd7) && (IIC_clk_cnt == 2'd3))state <= NO_ACK;else state <= state;NO_ACK    : if(IIC_clk_cnt == 2'd3)state <= END;else state <= state; END       : if((bit_cnt == 3'd3) && (IIC_clk_cnt == 2'd3))state <= IDLE;else state <= state;default   : state <= IDLE;endcase       end/*----------------IIC_clk_cnt 、 EN_IIC_clk_cnt设计-----------------------*/
always@(posedge IIC_clk or negedge reset_n)if(!reset_n)IIC_clk_cnt <= 2'd0;else if(!EN_IIC_clk_cnt) IIC_clk_cnt <= 2'd0;else IIC_clk_cnt <= IIC_clk_cnt + 2'd1;always@(posedge IIC_clk or negedge reset_n)if(!reset_n)EN_IIC_clk_cnt <= 1'd0;else if((state == END) && (bit_cnt == 3'd3) && (IIC_clk_cnt == 2'd3))EN_IIC_clk_cnt <= 1'd0;else if(IIC_start)EN_IIC_clk_cnt <= 1'd1;else EN_IIC_clk_cnt <= EN_IIC_clk_cnt;/*--------------------bit_cnt设计-----------------------*/
always@(posedge IIC_clk or negedge reset_n)if(!reset_n)bit_cnt <= 3'd0;else if((state == IDLE)||(state == START)||(state == ACK_1)||(state == ACK_2)||(state == ACK_3)||(state == ACK_4) ||(state == START_2)||(state == ACK_5)||(state == NO_ACK))bit_cnt <= 3'd0;else if((state == END) && (bit_cnt == 3'd3) && (IIC_clk_cnt == 2'd3))bit_cnt <= 3'd0;else if(IIC_clk_cnt == 2'd3)bit_cnt <= bit_cnt + 3'd1;else bit_cnt <= bit_cnt;/*--------------------ack 、 sda_in信号设计---------------------------*/
always@(*)begincase(state)ACK_1,ACK_2,ACK_3,ACK_4,ACK_5   : if(IIC_clk_cnt == 2'd0)ack <= sda_in   ;else ack <= ack      ;default                         : ack = 1'd1;endcaseendassign sda_in = IIC_SDA ;/*--------------------IIC_SCL设计-----------------------*/
always@(*)begincase(state)IDLE:IIC_SCL <= 1'd1;START:if(IIC_clk_cnt == 2'd3)IIC_SCL <= 1'd0;else IIC_SCL <= 1'd1;SEND_D_A,ACK_1,SEND_B_H,ACK_2,SEND_B_L,ACK_3,WR_DATA,ACK_4,START_2,SEND_RD_A,ACK_5,RD_DATA,NO_ACK:if((IIC_clk_cnt == 2'd1) || (IIC_clk_cnt == 2'd2))IIC_SCL <= 1'd1;else IIC_SCL <= 1'd0;END:if((bit_cnt == 3'd0) && (IIC_clk_cnt == 2'd0))IIC_SCL <= 1'd0;else IIC_SCL <= 1'd1;default:IIC_SCL <= 1'd1;endcaseend/*--------------------sda_out 、 rd_data_reg设计-----------------------*/
always@(*)begincase(state)IDLE        :beginsda_out <= 1'd1; rd_data_reg <= 8'd0;endSTART       :if(IIC_clk_cnt >= 2'd1)sda_out <= 1'd0; else sda_out <= 1'd1;SEND_D_A    :if(bit_cnt <= 3'd6)sda_out <= DEVICE_ADD[6 - bit_cnt];else sda_out <= 1'd0;ACK_1,ACK_2,ACK_3,ACK_4,ACK_5   :sda_out <= 1'd1;SEND_B_H    :  sda_out <= byte_addr[15-bit_cnt]; SEND_B_L    :  sda_out <= byte_addr[7-bit_cnt];     WR_DATA     :sda_out <= wr_data[7-bit_cnt];        START_2     :if(IIC_clk_cnt >= 2'd2)sda_out <= 1'd0; else sda_out <= 1'd1;   SEND_RD_A   :if(bit_cnt <= 3'd6)sda_out <= DEVICE_ADD[6 - bit_cnt];else sda_out <= 1'd1;                 RD_DATA     :beginsda_out <= 1'd1;if(IIC_clk_cnt == 2'd2)rd_data_reg[7 - bit_cnt] <=  sda_in;else    rd_data_reg <= rd_data_reg;endNO_ACK      :sda_out <= 1'd1;END         :if((bit_cnt == 3'd0) && (IIC_clk_cnt <= 2'd2))sda_out <= 1'd0;else sda_out <= 1'd1;default     :beginsda_out <= 1'd1;rd_data_reg <= rd_data_reg;endendcaseend/*--------------------rd_data设计-----------------------*/ 
always@(posedge IIC_clk or negedge reset_n)if(!reset_n)rd_data <= 8'd0;else if((state == RD_DATA) && (bit_cnt == 3'd7) && (IIC_clk_cnt == 2'd3))rd_data <= rd_data_reg;else    rd_data <= rd_data;/*--------------------EN_IIC_SDA设计-----------------------*/ 
//EN_IIC_SDA信号为1,表示IIC_SDA输出;反之,EN_IIC_SDA信号为0,表示IIC_SDA作为输入.assign EN_IIC_SDA = ((state == IDLE) || (state == START) || (state == SEND_D_A) || (state == SEND_B_H) || (state == SEND_B_L) || (state == WR_DATA)|| (state == START_2) || (state == SEND_RD_A) || (state == NO_ACK)|| (state == END));/*--------------------IIC_SDA设计-----------------------*/ 
assign IIC_SDA = EN_IIC_SDA ? sda_out : 1'dz;/*--------------------IIC_end设计-----------------------*/ 
always@(posedge IIC_clk or negedge reset_n)if(!reset_n)IIC_end <= 1'd0;else if((state == END) && (bit_cnt == 3'd3) && (IIC_clk_cnt == 2'd3))IIC_end <= 1'd1;else IIC_end <= 1'd0;endmodule

这篇关于55.基于IIC协议的EEPROM驱动控制(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114343

相关文章

Nginx中配置HTTP/2协议的详细指南

《Nginx中配置HTTP/2协议的详细指南》HTTP/2是HTTP协议的下一代版本,旨在提高性能、减少延迟并优化现代网络环境中的通信效率,本文将为大家介绍Nginx配置HTTP/2协议想详细步骤,需... 目录一、HTTP/2 协议概述1.HTTP/22. HTTP/2 的核心特性3. HTTP/2 的优

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Python异步编程中asyncio.gather的并发控制详解

《Python异步编程中asyncio.gather的并发控制详解》在Python异步编程生态中,asyncio.gather是并发任务调度的核心工具,本文将通过实际场景和代码示例,展示如何结合信号量... 目录一、asyncio.gather的原始行为解析二、信号量控制法:给并发装上"节流阀"三、进阶控制

使用DrissionPage控制360浏览器的完美解决方案

《使用DrissionPage控制360浏览器的完美解决方案》在网页自动化领域,经常遇到需要保持登录状态、保留Cookie等场景,今天要分享的方案可以完美解决这个问题:使用DrissionPage直接... 目录完整代码引言为什么要使用已有用户数据?核心代码实现1. 导入必要模块2. 关键配置(重点!)3.

SpringSecurity 认证、注销、权限控制功能(注销、记住密码、自定义登入页)

《SpringSecurity认证、注销、权限控制功能(注销、记住密码、自定义登入页)》SpringSecurity是一个强大的Java框架,用于保护应用程序的安全性,它提供了一套全面的安全解决方案... 目录简介认识Spring Security“认证”(Authentication)“授权” (Auth

python之流程控制语句match-case详解

《python之流程控制语句match-case详解》:本文主要介绍python之流程控制语句match-case使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录match-case 语法详解与实战一、基础值匹配(类似 switch-case)二、数据结构解构匹

Spring Security注解方式权限控制过程

《SpringSecurity注解方式权限控制过程》:本文主要介绍SpringSecurity注解方式权限控制过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、摘要二、实现步骤2.1 在配置类中添加权限注解的支持2.2 创建Controller类2.3 Us

Python中如何控制小数点精度与对齐方式

《Python中如何控制小数点精度与对齐方式》在Python编程中,数据输出格式化是一个常见的需求,尤其是在涉及到小数点精度和对齐方式时,下面小编就来为大家介绍一下如何在Python中实现这些功能吧... 目录一、控制小数点精度1. 使用 round() 函数2. 使用字符串格式化二、控制对齐方式1. 使用

Springboot控制反转与Bean对象的方法

《Springboot控制反转与Bean对象的方法》文章介绍了SpringBoot中的控制反转(IoC)概念,描述了IoC容器如何管理Bean的生命周期和依赖关系,它详细讲解了Bean的注册过程,包括... 目录1 控制反转1.1 什么是控制反转1.2 SpringBoot中的控制反转2 Ioc容器对Bea