Hadoop 2.4 完全分布式环境安装与配置及配置信息介绍

2024-08-28 08:38

本文主要是介绍Hadoop 2.4 完全分布式环境安装与配置及配置信息介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载: 仅仅是为了个人学习使用 , 记录遇到的问题,和解决方法。


本文是CentOS6 hadoop2.4完全分布式安装文档姊妹篇,本篇介绍的更加详细,可以相互参考,环境的搭建,前面基本都相同,这里重点:
导读:
1.各个文件之间权限是否一致
2.环境变量、配置文件发生发了哪些变化?
3.在配置过程中,自己有什么需要注意的地方?
4.文件中路径发生变化,对应的配置项哪些会发生变化?






包下载:hadoop2.4最新版本各种包下载
依赖项
Java
1. 从http://www.Oracle.com/technetwor ... nloads-1880260.html下载tar.gz格式的,32位和64位机器对应下载,这里下的是64位的
wget http://download.oracle.com/otn-p ... 51-linux-x64.tar.gz
2. 解压到/usr/local
tar -jxvf jdk-7u51-linux-x64.tar.gz -C /usr/local
3. 配置符号链接:cd /usr/local; ln -snf jdk1.7.0_45/ jdk
4. 配置环境变量到~/.bashrc
export JAVA_HOME="/usr/local/jdk"
export PATH="$JAVA_HOME/bin:$PATH"
5. 命令行下使用java、javax命令判断是否安装成功。
6. 在其他机器上
Hosts
所有的节点都修改/etc/hosts,使彼此之间都能把主机名解析为ip
 

SSH 无密码登陆
首先要配置本机的SSH服务器,运行 ps -e | grep ssh,查看是否有sshd进程,如果没有,说明server没启动,通过 /etc/init.d/ssh -start 启动server进程,如果提示ssh不存在 那么就是没安装server。Ubuntu下通过 sudo apt-get install openssh-server命令安装即可。
(1)生成当前用户的SSH公钥。
$ ssh-keygen -t rsa -P ''
它在/home/[你当前登录的用户名] 下生成.ssh目录(root用户即是在/root目录下),.ssh下有id_rsa和id_rsa.pub。id_rsa.pub即是本地SSH生成的公钥文件。客户端机器将id_rsa.pub文件添加到自己的~/.ssh/authorized_keys文件中即可免密码登录到本机。
(2)将~/.ssh/id_rsa.pub添加到目标机器的~/.ssh/authorized_keys文件中
•如果是本机的操作,则使用
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
将要登录的机器的公钥添加到本地的认证密钥库中。注意这里必须要用>>操作符进行追加操作。
使用
ssh localhost
命令即可免密码登录到本地。
•如果是将自己的公钥发送到别的机器上。
可以使用
scp ~/.ssh/id_rsa.pub root@172.24.253.2:.ssh/id_rsa.pub
这条scp命令进行文件上传操作。
安装Hadoop
下载Hadoop
最新版本hadoop-2.4.0安装包为 hadoop-2.4.0.tar.gz
下载官网地址 :http://www.apache.org/dyn/closer.cgi/hadoop/common/
下载到 /opt/hadoop/source 目录下
wget http://ftp.riken.jp/net/apache/hadoop/common/hadoop-2.4.0/hadoop-2.4.0.tar.gz
解压目录
tar zxvf hadoop-2.4.0.tar.gz
最终是这样子:
 
环境配置项
配置环境变量:
vim /etc/profile
添加
export HADOOP_DEV_HOME=/opt/hadoop/source
export PATH=$PATH:$HADOOP_DEV_HOME/bin
export PATH=$PATH:$HADOOP_DEV_HOME/sbin
export HADOOP_MAPARED_HOME=${HADOOP_DEV_HOME}
export HADOOP_COMMON_HOME=${HADOOP_DEV_HOME}
export HADOOP_HDFS_HOME=${HADOOP_DEV_HOME}
export YARN_HOME=${HADOOP_DEV_HOME}
export HADOOP_CONF_DIR=${HADOOP_DEV_HOME}/etc/hadoop
export HDFS_CONF_DIR=${HADOOP_DEV_HOME}/etc/hadoop
export YARN_CONF_DIR=${HADOOP_DEV_HOME}/etc/hadoop

文件配置
配置之前,需要在Cluster文件系统创建以下文件夹,用于存放命名空间以及数据信息。
~/dfs/name
~/dfs/data
~/temp
这里要涉及到的配置文件有7个:
~/Hadoop-2.4.0/etc/hadoop/hadoop-env.sh
~/hadoop-2.4.0/etc/hadoop/yarn-env.sh
~/hadoop-2.4.0/etc/hadoop/slaves
~/hadoop-2.4.0/etc/hadoop/core-site.xml
~/hadoop-2.4.0/etc/hadoop/hdfs-site.xml
~/hadoop-2.4.0/etc/hadoop/mapred-site.xml
~/hadoop-2.4.0/etc/hadoop/yarn-site.xml
以上个别文件默认不存在的,可以复制相应的template文件获得。
~/ect/hadoop/hadoop-env.sh 与 yarn-env.sh
原文件中设置Java环境:export JAVA_HOME=${JAVA_HOME},如果你环境变量中未配置JAVA_HOME,那么这里JAVA_HOME设置指向你的JAVA配置路径。
譬如:export JAVA_HOME="/usr/local/jdk"
~/etc/hadoop/slave
slaves (这个文件里面保存所有slave节点)
写入以下内容:
Slave1
Slave2
~/etc/hadoop/core-site.xml
在configuration节点里面添加属性
<property>
  <name>hadoop.tmp.dir</name>
  <value>file:/opt/hadoop/hdfs/tmp</value>
  <description>A base for other temporary directories.</description>
</property>
<property>
  <name>io.file.buffer.size</name>
  <value>131072</value>
</property>
<property>
  <name>fs.default.name</name>
  <value>hdfs://Master:9000</value>
</property>
添加httpfs的选项
<property>
<name>hadoop.proxyuser.root.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.root.groups</name>
<value>*</value>
</property>

~/etc/hadoop/hdfs-site.xml
<property> 
  <name>dfs.replication</name> 
  <value>3</value>
</property> 
<property> 
  <name>dfs.namenode.name.dir</name> 
  <value>file:/opt/hadoop/hdfs/name</value> 
  <final>true</final>
</property> 
<property> 
  <name>dfs.dataname.data.dir</name> 
  <value>file:/opt/hadoop/hdfs/data</value> 
  <final>true</final>
</property> 
<property>
  <name>dfs.namenode.secondary.http-address</name>
  <value>Master:9001</value>
</property>
<property>
  <name>dfs.webhdfs.enabled</name>
  <value>true</value>
</property>

~/etc/hadoop/yarn-site.xml
<property>
  <name>yarn.resourcemanager.address</name>
  <value>Master:18040</value>
</property>
<property>
  <name>yarn.resourcemanager.scheduler.address</name>
  <value>Master:18030</value>
</property>
<property>
  <name>yarn.resourcemanager.webapp.address</name>
  <value>Master:18088</value>
</property>
<property>
  <name>yarn.resourcemanager.resource-tracker.address</name>
  <value>Master:18025</value>
</property>
<property>
  <name>yarn.resourcemanager.admin.address</name>
  <value>Master:18141</value>
</property>
<property>
  <name>yarn.nodemanager.aux-services</name>
  <value>mapreduce.shuffle</value>
</property>
<property>
  <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
  <value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

Hadoop 测试

HDFS

格式化NameNode

执行命令:hadoop namenode -format,可以格式化NameNode。

l 可能错误:出现未知的主机名问题。

java.net.UnknownHostException: localhost.localdomain: localhost.localdomain  

        at java.net.InetAddress.getLocalHost(InetAddress.java:1353)  

        at org.apache.hadoop.metrics.MetricsUtil.getHostName(MetricsUtil.java:91)  

        at org.apache.hadoop.metrics.MetricsUtil.createRecord(MetricsUtil.java:80)  

        at org.apache.hadoop.hdfs.server.namenode.FSDirectory.initialize(FSDirectory.java:73)  

        at org.apache.hadoop.hdfs.server.namenode.FSDirectory.<init>(FSDirectory.java:68)  

        at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.<init>(FSNamesystem.java:370)  

        at org.apache.hadoop.hdfs.server.namenode.NameNode.format(NameNode.java:853)  

        at org.apache.hadoop.hdfs.server.namenode.NameNode.createNameNode(NameNode.java:947) 

        at org.apache.hadoop.hdfs.server.namenode.NameNode.main(NameNode.java:964)  

/************************************************************  

SHUTDOWN_MSG: Shutting down NameNode at java.net.UnknownHostException: localhost.localdomain: localhost.localdomain  

************************************************************/  

使用hostname命令,可以发现当前的主机名为hadoop_master(Ubuntu系统下在/etc/hostname,CentOS系统在 /etc/sysconfig/network文件中设置),而hosts文件中信息如下:

127.0.0.1 localhost

127.0.1.1 ubuntu

192.168.198.133 Master

192.168.198.134 Slave1

即无法解析hadoop_master的信息,将hosts文件信息改为如下:

127.0.0.1 hadoop_master

127.0.1.1 ubuntu

192.168.198.133 Master

192.168.198.134 Slave1




Hadoop集群

启动集群

~/sbin/start-all.sh 启动Hadoop集群,最好使用~/sbin/start-dfs.sh与~/sbin/start-yarn.sh来代替。


.1 64位平台不兼容错误

Starting namenodes on [Java HotSpot(TM) 64-Bit Server VM warning: You have loaded library /opt/hadoop/source/lib/native/libhadoop.so.1.0.0 which might have disabled stack guard. The VM will try to fix the stack guard now.

在/etc/profile 或者 ~/.bash_profile中添加:

export HADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_DEV_HOME}/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_DEV_HOME/lib"



Command Lines

Hadoop

* start-all.sh 启动所有的Hadoop守护。包括namenode, datanode, jobtracker, tasktrack

* stop-all.sh 停止所有的Hadoop

* start-mapred.sh 启动Map/Reduce守护。包括Jobtracker和Tasktrack

* stop-mapred.sh 停止Map/Reduce守护

* start-dfs.sh 启动Hadoop DFS守护Namenode和Datanode

* stop-dfs.sh 停止DFS守护

HDFS

1. 查看文件列表

查看hdfs中/user/admin/hdfs目录下的文件。

a. 进入HADOOP_HOME目录。

b. 执行sh bin/hadoop fs -ls /user/admin/hdfs

查看hdfs中/user/admin/hdfs目录下的所有文件(包括子目录下的文件)。

a. 进入HADOOP_HOME目录。

b. 执行sh bin/hadoop fs -lsr /user/admin/hdfs

2. 创建文件目录

查看hdfs中/user/admin/hdfs目录下再新建一个叫做newDir的新目录。

a. 进入HADOOP_HOME目录。

b. 执行sh bin/hadoop fs -mkdir /user/admin/hdfs/newDir

3. 删除文件

删除hdfs中/user/admin/hdfs目录下一个名叫needDelete的文件

a. 进入HADOOP_HOME目录。

b. 执行sh bin/hadoop fs -rm /user/admin/hdfs/needDelete

删除hdfs中/user/admin/hdfs目录以及该目录下的所有文件

a. 进入HADOOP_HOME目录。

b. 执行sh bin/hadoop fs -rmr /user/admin/hdfs

4. 上传文件

上传一个本机/home/admin/newFile的文件到hdfs中/user/admin/hdfs目录下

a. 进入HADOOP_HOME目录。

b. 执行sh bin/hadoop fs–put /home/admin/newFile /user/admin/hdfs/

5. 下载文件

下载hdfs中/user/admin/hdfs目录下的newFile文件到本机/home/admin/newFile中

a. 进入HADOOP_HOME目录。

b. 执行sh bin/hadoop fs –get /user/admin/hdfs/newFile /home/admin/newFile

6. 查看文件内容

查看hdfs中/user/admin/hdfs目录下的newFile文件

a. 进入HADOOP_HOME目录。

b. 执行sh bin/hadoop fs–cat /home/admin/newFile






配置文件详解
CoreHadoop-env.sh

记录脚本要用的环境变量,以运行hadoop。
文件位于~/hadoop/etc/hadoop/core-site.xml目录下。
# 设置JDK的位置
export JAVA_HOME=${JAVA_HOME}
如果你的环境变量中没有设置JAVA_HOME,这里即可设置为:
exportJAVA_HOME=/home/java/jdk/jdk1.7.0_51
另外,鉴于Hadoop默认的是32位系统,还需要加上64位支持:
exportHADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_DEV_HOME}/lib/native
exportHADOOP_OPTS="-Djava.library.path=$HADOOP_DEV_HOME/lib"

core-site.xml该文件是 hadoop core的配置项,例如hdfs和mapreduce常用的i/o设置等,位于~/hadoop/etc/hadoop/core-site.xml目录下。

属性

说明
fs.default.name
hdfs://master:9000
定义master的URI和端口
fs.checkpoint.dir
${hadoop.tmp.dir}(默认)
/dfs/namesecondary
SNN的元数据以,号隔开,hdfs会把元数据冗余复制到这些目录,一般这些目录是不同的块设备,不存在的目录会被忽略掉
fs.checkpoint.period
1800
定义ND的备份间隔时间,秒为单位,只对SNN效,默认一小时
fs.checkpoint.size
33554432
以日志大小间隔做备份间隔,只对SNN生效,默认64M
fs.checkpoint.edits.dir
${fs.checkpoint.dir}(默认)
SNN的事务文件存储的目录,以,号隔开,hdfs会把事务文件冗余复制到这些目录
fs.trash.interval
10800
HDFS垃圾箱设置,可以恢复误删除,分钟数,0为禁用,添加该项无需重启hadoop
hadoop.tmp.dir
/tmp/hadoop
临时文件夹,指定后需将使用到的所有子级文件夹都要手动创建出来,否则无法正常启动服务。
hadoop.http.filter.initializers
org.apache.hadoop.security.
AuthenticationFilterInitializer
(排版调整,实际配置不要回车)
需要jobtracker,tasktracker
NN,DN等http访问端口用户验证使用,需配置所有节点
hadoop.http.authentication.type
simple | kerberos | #AUTHENTICATION_HANDLER_CLASSNAME#
验证方式,默认为简单,也可自己定义class,需配置所有节点
hadoop.http.authentication.token.validity
36000
验证令牌的有效时间,需配置所有节点
hadoop.http.authentication.signature.secret
默认可不写参数
默认不写在hadoop启动时自动生成私密签名,需配置所有节点
hadoop.http.authentication.cookie.domain
domian.tld
http验证所使用的cookie的域名,IP地址访问则该项无效,必须给所有节点都配置域名才可以。
hadoop.http.authentication. simple.anonymous.allowed
true | false
简单验证专用,默认允许匿名访问,true
hadoop.http.authentication.kerberos.principal
HTTP/localhost@$LOCALHOST
Kerberos验证专用,参加认证的实体机必须使用HTTP作为K的Name
hadoop.http.authentication.kerberos.keytab
/home/xianglei/hadoop.keytab
Kerberos验证专用,密钥文件存放位置
hadoop.security.authorization
true|false
Hadoop服务层级验证安全验证,需配合hadoop-policy.xml使用,配置好以后用dfsadmin,mradmin -refreshServiceAcl刷新生效
hadoop.security.authentication
simple | kerberos
hadoop本身的权限验证,非http访问,simple或者kerberos
hadoop.logfile.size
1000000000
设置日志文件大小,超过则滚动新日志
hadoop.logfile.count
20
最大日志数
io.bytes.per.checksum
1024
每校验码所校验的字节数,不要大于io.file.buffer.size
io.skip.checksum.errors
true | false
处理序列化文件时跳过校验码错误,不抛异常。默认false
io.serializations
org.apache.hadoop.io.serializer.WritableSerialization
序列化的编解码器
io.seqfile.compress.blocksize
1024000
块压缩的序列化文件的最小块大小,字节
io.compression.codecs
org.apache.hadoop.io.compress.DefaultCodec,
com.hadoop.compression.lzo.LzoCodec,
com.hadoop.compression.lzo.LzopCodec,
org.apache.hadoop.io.compress.GzipCodec,
org.apache.hadoop.io.compress.BZip2Codec,
org.apache.hadoop.io.compress.SnappyCodec
(排版调整,实际配置不要回车)
Hadoop所使用的编解码器,gzip、bzip2为自带,lzo需安装hadoopgpl或者kevinweil,逗号分隔。
snappy需要单独安装并修改hadoop-env.sh配置LD_LIBRARY_PATH=snappy类库位置
io.compression.codec.lzo.class
com.hadoop.compression.lzo.LzoCodec
LZO所使用的压缩编码器
io.file.buffer.size
131072
用作序列化文件处理时读写buffer的大小
webinterface.private.actions
true | false
设为true,则JT和NN的tracker网页会出现杀任务删文件等操作连接,默认是false
topology.script.file.name
/hadoop/bin/RackAware.py
机架感知脚本位置
topology.script.number.args
1000
机架感知脚本管理的主机数,




<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="http://wsysisibeibei.blog.163.com/blog/configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
<property>
<name>fs.default.name</name>
<!-- fs.default.name -这是一个描述集群中NameNode结点的URI(包括协议、主机名称、端口号),集群里面的每一台机器都需要知道NameNode的地址。DataNode结点会先在NameNode上注册,这样它们的数据才可以被使用。独立的客户端程序通过这个URI跟DataNode交互,以取得文件的块列表。-->
<value>hdfs://localhost:9100</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<!--
hadoop.tmp.dir 是hadoop文件系统依赖的基础配置,很多路径都依赖它。如果hdfs-site.xml中不配 置namenode和datanode的存放位置,默认就放在这个路径中Hadoop的默认临时路径,这个最好配置,然后在新增节点或者其他情况下莫名其妙的DataNode启动不了,就删除此文件中的tmp目录即可。
不过如果删除了NameNode机器的此目录,那么就需要重新执行NameNode格式化的命令了。
-->
<value>/data/hdfs/tmp</value>
<description>A base for other temporary directories.</description>
</property>
</configuration>
这里配置的是HDFS的地址和端口号。

Node HDFS hdfs-site.xml
hadoop守护进程的配置项,包括namenode、辅助namenode和datanode等。
该文件位于~/hadoop/etc/hadoop/目录下。
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="http://wsysisibeibei.blog.163.com/blog/configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
<property>
<name>dfs.replication</name>
<!--
dfs.replication -它决定着 系统里面的文件块的数据备份个数。
对于一个实际的应用,它应该被设为3(这个 数字并没有上限,但更多的备份可能并没有作用,而且会占用更多的空间)。
少于三个的备份,可能会影响到数据的 可靠性(系统故障时,也许会造成数据丢失)
-->
<value>3</value>
</property>
<property>
<name>dfs.name.dir</name>
<!--
dfs.name.dir - 这是NameNode结点存储hadoop文件系统信息的本地系统路径。
这个值只对NameNode有效,DataNode并不需要使用到它。
上面对于/temp类型的警告,同样也适用于这里。在实际应用中,它最好被覆盖掉。
-->
<value>/home/hdfs/name</value>
</property>
<property>
<name>dfs.data.dir</name>
<!-- dfs.data.dir -
这是DataNode结点被指定要存储数据的本地文件系统路径。
DataNode结点上 的这个路径没有必要完全相同,因为每台机器的环境很可能是不一样的。
但如果每台机器上的这 个路径都是统一配置的话,会使工作变得简单一些。
默认的情况下,它的值hadoop.tmp.dir, 这 个路径只能用于测试的目的,因为,它很可能会丢失掉一些数据。所以,这个值最好还是被覆 盖。
-->
<value>/home/hdfs/data</value>
</property>
<!--
解决:org.apache.hadoop.security.AccessControlException:Permission denied:user=Administrator,access=WRITE,inode="tmp":root:supergroup:rwxr-xr-x。因为Eclipse使用hadoop插件提交作业时,会默认以 DrWho身份去将作业写入hdfs文件系统中,对应的也就是 HDFS 上的/user/hadoop , 由于 DrWho用户对hadoop目录并没有写入权限,所以导致异常的发生。解决方法为:放开 hadoop 目录的权限, 命令如下 :$ hadoop fs -chmod 777 /user/hadoop
-->
<property>
<name>dfs.permissions</name>
<value>false</value>
<description>
If "true", enable permission checking in HDFS. If "false", permission checking is turned off, but all other behavior is unchanged. Switching from one parameter value to the other does not change the mode, owner or group of files or directories
</description>
</property>
</configuration>
在Hadoop中HDFS的默认备份方式为3,这里将其改为1。
Map/Reduce mapred-site.xml mapreduce守护进程的配置项,包括jobtracker和tasktracker。
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="http://wsysisibeibei.blog.163.com/blog/configuration.xsl"?>
<!-- Put site-specific property overrides in this file. -->
<configuration>
<property>
<name>mapred.job.tracker</name>
<value>localhost:9101</value>
</property>
</configuration>








http://blog.csdn.net/wxyyxc1992/article/details/25687173




这篇关于Hadoop 2.4 完全分布式环境安装与配置及配置信息介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114269

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

springboot security之前后端分离配置方式

《springbootsecurity之前后端分离配置方式》:本文主要介绍springbootsecurity之前后端分离配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的... 目录前言自定义配置认证失败自定义处理登录相关接口匿名访问前置文章总结前言spring boot secu

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

Spring Boot结成MyBatis-Plus最全配置指南

《SpringBoot结成MyBatis-Plus最全配置指南》本文主要介绍了SpringBoot结成MyBatis-Plus最全配置指南,包括依赖引入、配置数据源、Mapper扫描、基本CRUD操... 目录前言详细操作一.创建项目并引入相关依赖二.配置数据源信息三.编写相关代码查zsRArly询数据库数

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技