强化学习第十章:Actor-Critic 方法

2024-08-28 08:04

本文主要是介绍强化学习第十章:Actor-Critic 方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习第十章:Actor-Critic 方法

  • 什么叫Actor-Critic
  • 最简单的AC,QAC(Q Actor-Critic)
  • 优势函数的AC,A2C(Advantage Actor-Critic)
  • 异策略AC,Off-Policy AC
  • 确定性策略梯度,DPG
  • 总结
  • 参考资料

什么叫Actor-Critic

一句话,策略由动作来执行,执行者叫Actor,评价执行好坏的叫Critic(Policy Evaluation)。

最简单的AC,QAC(Q Actor-Critic)

之前的REINFORCE(PG by MC)用的是MC来近似qπ,现在使用另一种方式TD:
在这里插入图片描述
熟悉的Critic,其实就是SARSA算法,Policy Update过程利用当前 wt更新 策略 参数θt ,然后Value Update过程更新wt,之前的 θt用来生成新的数据 ,这两个过程从VU过程开始想可能更好理解。

优势函数的AC,A2C(Advantage Actor-Critic)

  • 最简单的PG说起,
    在这里插入图片描述
    lnx的梯度=x的梯度/x,那么有
    在这里插入图片描述
    可以观察到:
    在这里插入图片描述
    这里的分子是qt(st, at),有啥改进方向吗?
  • 带基线的PG
    qt(st, at)是当前状态动作价值的 近似 ,如果减去一个 偏置项 ,或者说一个参考值,那么对于上面的 比例因子β 来说会 更准确 ,那么这个值是多少呢,如果没有减,那么就相当于0,对于状态动作价值来说,可能会想到的一个参考值就是 状态价值vπ(s)
    在这里插入图片描述
    这个值是最优的吗,实际上是次优的,最优的是下边的(计算复杂):
    在这里插入图片描述
    去掉复杂的计算,就是上面次 次优的基线 ,引入这样一个基线,对于 状态价值函数的近似(状态价值的期望)来说是没影响 的,也就说之前的方法 TD或MC还能用 ,但是能 减少近似的方差 。证明在赵老师书的P226。
  • 优势函数
    在这里插入图片描述
    这个为啥叫优势函数,当前的状态动作价值都大于状态价值的,该动作相对来说比较有优势,鼓励该动作,反之,抑制。
    对于这个优势函数,求期望可以得到:
    在这里插入图片描述
    那就可以将优势函数近似为TD-Error,熟悉的感觉来了:
    在这里插入图片描述
    伪代码(多了个优势函数的计算过程):
    在这里插入图片描述

异策略AC,Off-Policy AC

异策略,行为策略和更新的不是一个,就叫异策略,那么更新的策略就是之前的,那行为策略是谁,是β:
在这里插入图片描述
用给定策略β的采样来更新π的参数,为啥要这样做,这样做对吗。在有些 离线强化学习 情况下, 不能实时交互产生数据 ,这个时候就要用到这种方法,很明显 预采集 的数据的 策略当前策略不一样 的,不能直接使用,需要乘以一个 比例 ,代表之前采集到的数据对于当前策略更新的重要程度,这样就能使用了,但实际上两个策略之间的差距不能太大,后面的PPO会解决这个问题。
关于重要性采样的进一步理解:
在这里插入图片描述
具体比值的理解:
在这里插入图片描述

确定性策略梯度,DPG

到目前为止,学习了PG,AC这些 在线策略算法 ,样本效率(sample efficiency)比较低,当然,DQN和A2C也可以 离线学习 ,但是只能处理 动作离散 的情况,如果 本身连续进行离散 以适应算法,无法适应精确度要求高的任务,那么有没有 离线的,能处理连续动作空间 任务的算法呢,有那就是DPG。
假设给一个策略,输入状态,输出直接就是动作。
在这里插入图片描述
那DPG算法的优化函数是什么呢,跟PG一样,分析:

  • 平均状态价值Average value
    在这里插入图片描述
    这里的s的分布同样可能与策略相关(马尔科夫链平稳分布)或无关(固定值,只关心一些或某个状态)
  • 平均即时奖励 Average reward
    在这里插入图片描述
    经过求解两种评价的梯度,P236开始证明:
    在这里插入图片描述
    OK,梯度有了,梯度上升迭代式:
    在这里插入图片描述
    最终的伪代码(如果里面的qsa用神经网络来近似,那么就是DDPG):
    在这里插入图片描述

总结

从QAC到A2C再到离线A2C,最后的DPG为什么是离线的,注意解决的关键问题以及引入的手段。

参考资料

【强化学习的数学原理】课程:从零开始到透彻理解(完结)

这篇关于强化学习第十章:Actor-Critic 方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114197

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤