强化学习第十章:Actor-Critic 方法

2024-08-28 08:04

本文主要是介绍强化学习第十章:Actor-Critic 方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习第十章:Actor-Critic 方法

  • 什么叫Actor-Critic
  • 最简单的AC,QAC(Q Actor-Critic)
  • 优势函数的AC,A2C(Advantage Actor-Critic)
  • 异策略AC,Off-Policy AC
  • 确定性策略梯度,DPG
  • 总结
  • 参考资料

什么叫Actor-Critic

一句话,策略由动作来执行,执行者叫Actor,评价执行好坏的叫Critic(Policy Evaluation)。

最简单的AC,QAC(Q Actor-Critic)

之前的REINFORCE(PG by MC)用的是MC来近似qπ,现在使用另一种方式TD:
在这里插入图片描述
熟悉的Critic,其实就是SARSA算法,Policy Update过程利用当前 wt更新 策略 参数θt ,然后Value Update过程更新wt,之前的 θt用来生成新的数据 ,这两个过程从VU过程开始想可能更好理解。

优势函数的AC,A2C(Advantage Actor-Critic)

  • 最简单的PG说起,
    在这里插入图片描述
    lnx的梯度=x的梯度/x,那么有
    在这里插入图片描述
    可以观察到:
    在这里插入图片描述
    这里的分子是qt(st, at),有啥改进方向吗?
  • 带基线的PG
    qt(st, at)是当前状态动作价值的 近似 ,如果减去一个 偏置项 ,或者说一个参考值,那么对于上面的 比例因子β 来说会 更准确 ,那么这个值是多少呢,如果没有减,那么就相当于0,对于状态动作价值来说,可能会想到的一个参考值就是 状态价值vπ(s)
    在这里插入图片描述
    这个值是最优的吗,实际上是次优的,最优的是下边的(计算复杂):
    在这里插入图片描述
    去掉复杂的计算,就是上面次 次优的基线 ,引入这样一个基线,对于 状态价值函数的近似(状态价值的期望)来说是没影响 的,也就说之前的方法 TD或MC还能用 ,但是能 减少近似的方差 。证明在赵老师书的P226。
  • 优势函数
    在这里插入图片描述
    这个为啥叫优势函数,当前的状态动作价值都大于状态价值的,该动作相对来说比较有优势,鼓励该动作,反之,抑制。
    对于这个优势函数,求期望可以得到:
    在这里插入图片描述
    那就可以将优势函数近似为TD-Error,熟悉的感觉来了:
    在这里插入图片描述
    伪代码(多了个优势函数的计算过程):
    在这里插入图片描述

异策略AC,Off-Policy AC

异策略,行为策略和更新的不是一个,就叫异策略,那么更新的策略就是之前的,那行为策略是谁,是β:
在这里插入图片描述
用给定策略β的采样来更新π的参数,为啥要这样做,这样做对吗。在有些 离线强化学习 情况下, 不能实时交互产生数据 ,这个时候就要用到这种方法,很明显 预采集 的数据的 策略当前策略不一样 的,不能直接使用,需要乘以一个 比例 ,代表之前采集到的数据对于当前策略更新的重要程度,这样就能使用了,但实际上两个策略之间的差距不能太大,后面的PPO会解决这个问题。
关于重要性采样的进一步理解:
在这里插入图片描述
具体比值的理解:
在这里插入图片描述

确定性策略梯度,DPG

到目前为止,学习了PG,AC这些 在线策略算法 ,样本效率(sample efficiency)比较低,当然,DQN和A2C也可以 离线学习 ,但是只能处理 动作离散 的情况,如果 本身连续进行离散 以适应算法,无法适应精确度要求高的任务,那么有没有 离线的,能处理连续动作空间 任务的算法呢,有那就是DPG。
假设给一个策略,输入状态,输出直接就是动作。
在这里插入图片描述
那DPG算法的优化函数是什么呢,跟PG一样,分析:

  • 平均状态价值Average value
    在这里插入图片描述
    这里的s的分布同样可能与策略相关(马尔科夫链平稳分布)或无关(固定值,只关心一些或某个状态)
  • 平均即时奖励 Average reward
    在这里插入图片描述
    经过求解两种评价的梯度,P236开始证明:
    在这里插入图片描述
    OK,梯度有了,梯度上升迭代式:
    在这里插入图片描述
    最终的伪代码(如果里面的qsa用神经网络来近似,那么就是DDPG):
    在这里插入图片描述

总结

从QAC到A2C再到离线A2C,最后的DPG为什么是离线的,注意解决的关键问题以及引入的手段。

参考资料

【强化学习的数学原理】课程:从零开始到透彻理解(完结)

这篇关于强化学习第十章:Actor-Critic 方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114197

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验