强化学习第十章:Actor-Critic 方法

2024-08-28 08:04

本文主要是介绍强化学习第十章:Actor-Critic 方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习第十章:Actor-Critic 方法

  • 什么叫Actor-Critic
  • 最简单的AC,QAC(Q Actor-Critic)
  • 优势函数的AC,A2C(Advantage Actor-Critic)
  • 异策略AC,Off-Policy AC
  • 确定性策略梯度,DPG
  • 总结
  • 参考资料

什么叫Actor-Critic

一句话,策略由动作来执行,执行者叫Actor,评价执行好坏的叫Critic(Policy Evaluation)。

最简单的AC,QAC(Q Actor-Critic)

之前的REINFORCE(PG by MC)用的是MC来近似qπ,现在使用另一种方式TD:
在这里插入图片描述
熟悉的Critic,其实就是SARSA算法,Policy Update过程利用当前 wt更新 策略 参数θt ,然后Value Update过程更新wt,之前的 θt用来生成新的数据 ,这两个过程从VU过程开始想可能更好理解。

优势函数的AC,A2C(Advantage Actor-Critic)

  • 最简单的PG说起,
    在这里插入图片描述
    lnx的梯度=x的梯度/x,那么有
    在这里插入图片描述
    可以观察到:
    在这里插入图片描述
    这里的分子是qt(st, at),有啥改进方向吗?
  • 带基线的PG
    qt(st, at)是当前状态动作价值的 近似 ,如果减去一个 偏置项 ,或者说一个参考值,那么对于上面的 比例因子β 来说会 更准确 ,那么这个值是多少呢,如果没有减,那么就相当于0,对于状态动作价值来说,可能会想到的一个参考值就是 状态价值vπ(s)
    在这里插入图片描述
    这个值是最优的吗,实际上是次优的,最优的是下边的(计算复杂):
    在这里插入图片描述
    去掉复杂的计算,就是上面次 次优的基线 ,引入这样一个基线,对于 状态价值函数的近似(状态价值的期望)来说是没影响 的,也就说之前的方法 TD或MC还能用 ,但是能 减少近似的方差 。证明在赵老师书的P226。
  • 优势函数
    在这里插入图片描述
    这个为啥叫优势函数,当前的状态动作价值都大于状态价值的,该动作相对来说比较有优势,鼓励该动作,反之,抑制。
    对于这个优势函数,求期望可以得到:
    在这里插入图片描述
    那就可以将优势函数近似为TD-Error,熟悉的感觉来了:
    在这里插入图片描述
    伪代码(多了个优势函数的计算过程):
    在这里插入图片描述

异策略AC,Off-Policy AC

异策略,行为策略和更新的不是一个,就叫异策略,那么更新的策略就是之前的,那行为策略是谁,是β:
在这里插入图片描述
用给定策略β的采样来更新π的参数,为啥要这样做,这样做对吗。在有些 离线强化学习 情况下, 不能实时交互产生数据 ,这个时候就要用到这种方法,很明显 预采集 的数据的 策略当前策略不一样 的,不能直接使用,需要乘以一个 比例 ,代表之前采集到的数据对于当前策略更新的重要程度,这样就能使用了,但实际上两个策略之间的差距不能太大,后面的PPO会解决这个问题。
关于重要性采样的进一步理解:
在这里插入图片描述
具体比值的理解:
在这里插入图片描述

确定性策略梯度,DPG

到目前为止,学习了PG,AC这些 在线策略算法 ,样本效率(sample efficiency)比较低,当然,DQN和A2C也可以 离线学习 ,但是只能处理 动作离散 的情况,如果 本身连续进行离散 以适应算法,无法适应精确度要求高的任务,那么有没有 离线的,能处理连续动作空间 任务的算法呢,有那就是DPG。
假设给一个策略,输入状态,输出直接就是动作。
在这里插入图片描述
那DPG算法的优化函数是什么呢,跟PG一样,分析:

  • 平均状态价值Average value
    在这里插入图片描述
    这里的s的分布同样可能与策略相关(马尔科夫链平稳分布)或无关(固定值,只关心一些或某个状态)
  • 平均即时奖励 Average reward
    在这里插入图片描述
    经过求解两种评价的梯度,P236开始证明:
    在这里插入图片描述
    OK,梯度有了,梯度上升迭代式:
    在这里插入图片描述
    最终的伪代码(如果里面的qsa用神经网络来近似,那么就是DDPG):
    在这里插入图片描述

总结

从QAC到A2C再到离线A2C,最后的DPG为什么是离线的,注意解决的关键问题以及引入的手段。

参考资料

【强化学习的数学原理】课程:从零开始到透彻理解(完结)

这篇关于强化学习第十章:Actor-Critic 方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114197

相关文章

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Debian如何查看系统版本? 7种轻松查看Debian版本信息的实用方法

《Debian如何查看系统版本?7种轻松查看Debian版本信息的实用方法》Debian是一个广泛使用的Linux发行版,用户有时需要查看其版本信息以进行系统管理、故障排除或兼容性检查,在Debia... 作为最受欢迎的 linux 发行版之一,Debian 的版本信息在日常使用和系统维护中起着至关重要的作

Python中lambda排序的六种方法

《Python中lambda排序的六种方法》本文主要介绍了Python中使用lambda函数进行排序的六种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1.对单个变量进行排序2. 对多个变量进行排序3. 降序排列4. 单独降序1.对单个变量进行排序