基于机器学习的工业制造缺陷分析预测系统

2024-08-28 07:28

本文主要是介绍基于机器学习的工业制造缺陷分析预测系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B站视频及代码下载:基于机器学习的工业制造缺陷分析预测系统-视频-代码

1. 项目简介

        制造缺陷是工业生产过程中面临的重大挑战之一,对产品质量和生产效率产生直接影响。准确预测和分析制造缺陷的发生,可以帮助企业提高生产质量、降低成本,并优化供应链管理。通过机器学习模型分析影响制造缺陷的主要因素,能够为制造业提供有效的改进策略和预防措施,从而提升整体生产效能。本项目,我们提出了一种数据科学方法,使用包括各种生产指标、供应链因素、质量控制评估、维护计划、劳动力生产率指标、能耗模式和增材制造细节的综合数据集,利用 Xgboost建模训练,测试集预测 AUC 达到99.7%,并搭建交互式分析系统来预测制造缺陷。

基于机器学习的工业制造缺陷分析预测系统

2. 数据探索式可视化分析 

        为了更好地理解数据分布和特征之间的关系,我们首先进行了数据探索式的可视化分析。这一步骤对于发现异常值、理解数据分布以及发现潜在的模式至关重要。

        关键技术点:

  • Pandas: 用于数据处理和清洗。
  • Matplotlib: 绘制基本图表。
  • Seaborn: 进行更复杂的统计图形绘制。

2.1 数据集读取与预处理

        本数据集包含了多个与制造缺陷相关的生产参数,数据来自不同的生产批次,旨在通过机器学习模型预测制造缺陷的发生,并分析主要的影响因素。数据集包括了生产量、生产成本、供应商质量、交货延迟、缺陷率、质量评分、维护时间、停机时间百分比、库存周转率等多个变量。

df = pd.read_csv("./manufacturing_defect_dataset.csv")
## 列名汉化
df.rename(columns={"ProductionVolume":"生产量","ProductionCost":"生产成本","SupplierQuality":"供应商质量评分","DeliveryDelay":"交货延迟","DefectRate":"缺陷率","QualityScore":"质量评分","MaintenanceHours":"维护时间","DowntimePercentage":"停机时间百分比","InventoryTurnover":"库存周转率","StockoutRate":"缺货率","WorkerProductivity":"工人生产力",\"SafetyIncidents":"安全事故数","EnergyConsumption":"能源消耗","EnergyEfficiency": "能源效率","AdditiveProcessTime": "附加加工时间","AdditiveMaterialCost": "附加材料成本","DefectStatus": "缺陷状态"
},inplace=True)df.sample(10)

2.2 类别标签数量分布

tmp = df["缺陷状态"].value_counts().to_frame().reset_index().rename(columns={"count":"数量"})tmp["缺陷状态"] = tmp["缺陷状态"].map(lambda x:"是" if x == 1 else "否")
tmp["百分比"] = tmp["数量"].map(lambda x:round(x/tmp["数量"].sum()*100,2))labels,values,percent = tmp["缺陷状态"].tolist(),tmp["数量"].tolist(),tmp["百分比"].tolist()

        可以看出,不存在缺陷的占 15.96%,这是一个类别非常不均衡的二分类问题,需要采用采样算法去平衡数据集的占比。

2.3 特征与目标的相关性分析

fig,ax = plt.subplots(1,1,figsize=(20, 16))
cmap = sns.diverging_palette(230, 20, as_cmap=True)
sns.heatmap(df.corr(), annot= True, cmap=cmap, vmax=.5, center=0,square=True, linewidths=.5, cbar_kws={"shrink": .5})
ax.set_xticklabels(labels=df.columns, rotation=90, fontsize=12)
ax.set_yticklabels(labels=df.columns, rotation=00, fontsize=12)
plt.show()

       可以看出:与观测值(工业制造缺陷)的相关性较高的特征有:生产量、缺陷率、质量评分、维护时间,其中质量评分呈现较强负相关,另外3个呈现较强的正相关,此外,其他特征与观测值的相关性不明显.

2.4 直方图和密度图上的数据分布

2.5 缺陷影响因素分析

num_columns = ['生产量', '缺陷率', '质量评分', '维护时间', '缺货率', '供应商质量评分']
plt.figure(figsize=(15, 10))
for i, column in enumerate(num_columns, 1):plt.subplot(3, 3, i)sns.boxplot(data=df, x='缺陷状态', y=column)plt.title(f'{column} by 缺陷')plt.ylabel(column if i % 3 != 1 else '') plt.tight_layout()
plt.show()

 

3. 样本采样均衡与扩充处理

        在处理不平衡的数据集时,数据集扩充技术显得尤为重要。不平衡数据集是指目标变量的各类别之间存在显著数量差异的数据集,在这种情况下,模型可能会偏向于多数类,导致少数类别的预测性能较差。为了解决这个问题,我们可以使用imbalanced-learn库中的两种常用方法:过采样和欠采样。

        (1)过采样 (RandomOverSampler)

        过采样是指增加少数类样本的数量,通常通过复制现有的样本或合成新的样本实现。RandomOverSampler是一种简单直接的方法,它随机重复少数类样本以平衡数据集。

        (2)欠采样 (RandomUnderSampler)

        欠采样是指减少多数类样本的数量,以平衡各类别之间的比例。RandomUnderSampler同样是一个简单直接的方法,它随机选择多数类样本的一部分,使多数类与少数类的数量相同。

        (3)结合使用过采样和欠采样

        在某些情况下,同时使用过采样和欠采样的方法可以达到更好的效果。例如,先使用RandomUnderSampler减少多数类样本的数量,然后再使用RandomOverSampler增加少数类样本的数量。

# Separate features and target variable
X = df.drop(columns=['缺陷状态'])
y = df['缺陷状态']# Count the occurrences of each class
class_counts = y.value_counts()# Calculate the target count for each class
target_count = min(class_counts)#########
# 省略部分代码
########## Apply resampling
print('X:', X.shape)
X_over, y_over = over_sampler.fit_resample(X, y)
print('X_over:', X_over.shape)
X_resampled, y_resampled = under_sampler.fit_resample(X_over, y_over)
print('X_resampled:', X_resampled.shape)# Concat
df_resampled = pd.concat([pd.DataFrame(X_resampled, columns=X.columns), pd.DataFrame(y_resampled, columns=['缺陷状态'])], axis=1)
df_resampled.shape

4. 基于机器学习的工业制造缺陷建模

4.1 切分出训练集、验证集和测试集

y_train_all = df_resampled['缺陷状态']
X_train_all = df_resampled.drop(columns=['缺陷状态'])X_train, X_valid, y_train, y_valid = train_test_split(X_train_all, y_train_all, test_size=0.1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.1, random_state=42)print('train: {}, valid: {}, test: {}'.format(X_train.shape[0], X_valid.shape[0], X_test.shape[0]))
train: 4410, valid: 545, test: 491

4.2 多模型预测性能对比初探

        初步选择 AdaBoost、GBT、LR、SVC、Xgboost这五类模型集成初步试验,选择性能最好的模型,以后续针对性的优化:

abc = AdaBoostClassifier()
gbc = GradientBoostingClassifier()
lgr = LogisticRegression()
svc = SVC()
xgb_clf = XGBClassifier()models = [abc, gbc, lgr, svc, xgb_clf]names = ["Ada Boost", "Gradient Boosting","Logistic Regression", "Support Vector Machine", "XGBoost"]def training(model):# 省略部分关键代码cm = confusion_matrix(pred, y_test)return score*100, report, cmscores, reports, cms = [], dict(), dict()
for i, j in zip(models, names):score, report, cm = training(i)scores += [score]reports[j] = reportcms[j] = cm

        可以看出,在默认参数下, XGBoost 的性能最好,达到99.39%.

4.3 XGBoost 模型优化

        通过调优XGBoost模型参数,通过验证集的预测性能进行参数调优:

df_columns = X_train.columns.values
print('===> feature count: {}'.format(len(df_columns)))xgb_params = {'eta': 0.5,'colsample_bytree': 0.4,'max_depth': 8,# 'lambda': 2.0,'eval_metric': 'auc','objective': 'binary:logistic','nthread': -1,'silent': 1,'booster': 'gbtree'
}dtrain = xgb.DMatrix(X_train, y_train, feature_names=df_columns)
dvalid = xgb.DMatrix(X_valid, y_valid, feature_names=df_columns)watchlist = [(dtrain, 'train'), (dvalid, 'valid')]model = xgb.train(dict(xgb_params),dtrain,evals=watchlist,verbose_eval=10,early_stopping_rounds=100,num_boost_round=4000)
[0]	train-auc:0.87004	valid-auc:0.85053
[10]	train-auc:0.99983	valid-auc:0.99744
[20]	train-auc:1.00000	valid-auc:0.99973
[30]	train-auc:1.00000	valid-auc:0.99993
[40]	train-auc:1.00000	valid-auc:0.99997
[50]	train-auc:1.00000	valid-auc:0.99993
[60]	train-auc:1.00000	valid-auc:0.99995
[70]	train-auc:1.00000	valid-auc:0.99993
[80]	train-auc:1.00000	valid-auc:0.99992
[90]	train-auc:1.00000	valid-auc:0.99995
[100]	train-auc:1.00000	valid-auc:0.99995
[110]	train-auc:1.00000	valid-auc:0.99995
[120]	train-auc:1.00000	valid-auc:0.99995
[130]	train-auc:1.00000	valid-auc:0.99995
[138]	train-auc:1.00000	valid-auc:0.99996

4.4 特征重要程度分布

4.5 模型性能评估

4.5.1 AUC 指标评估
# predict train
predict_train = model.predict(dtrain)
train_auc = evaluate_score(predict_train, y_train)# predict validate
predict_valid = model.predict(dvalid)
valid_auc = evaluate_score(predict_valid, y_valid)# predict test
dtest = xgb.DMatrix(X_test, feature_names=df_columns)
predict_test = model.predict(dtest)
test_auc = evaluate_score(predict_test, y_test)print('训练集 auc = {:.7f} , 验证集 auc = {:.7f} , 测试集 auc = {:.7f}\n'.format(train_auc, valid_auc, test_auc))
训练集 auc = 1.0000000 , 验证集 auc = 0.9999596 , 测试集 auc = 0.9971614

4.5.2 测试集预测 ROC 曲线

4.5.3 测试集预测结果混淆矩阵计算 

5. 基于机器学习的工业制造缺陷预测系统

5.1 系统首页

5.2 特征与目标的相关性分析

5.3 缺陷影响因素分析

5.4 工业制造缺陷预测

6. 结论

        本项目,我们提出了一种数据科学方法,使用包括各种生产指标、供应链因素、质量控制评估、维护计划、劳动力生产率指标、能耗模式和增材制造细节的综合数据集,利用 Xgboost建模训练,测试集预测 AUC 达到99.7%,并搭建交互式分析系统来预测制造缺陷。

  B站视频及代码下载:基于机器学习的工业制造缺陷分析预测系统-视频-代码

 欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的师姐 QQ 名片 :)

精彩专栏推荐订阅:

1. Python数据挖掘精品实战案例

2. 计算机视觉 CV 精品实战案例

3. 自然语言处理 NLP 精品实战案例

这篇关于基于机器学习的工业制造缺陷分析预测系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114114

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听