构建高效搜索系统 - Faiss向量数据库的快速入门

2024-08-28 07:28

本文主要是介绍构建高效搜索系统 - Faiss向量数据库的快速入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

快速入门

 创建第一个Faiss索引

 加载数据到索引中

执行基本查询

评估索引性能


快速入门

 创建第一个Faiss索引

先需要导入必要的库,并定义一个索引对象。使用最基础的Flat索引作为例子。

import numpy as np
import faiss# 设置向量的维度
d = 128# 创建一个Flat索引,使用L2(欧几里得)距离
index = faiss.IndexFlatL2(d)# 打印索引信息
print("Index created:", index)

先导入numpyfaiss库。指定了向量的维度为128,并创建一个基于L2距离的Flat索引对象。IndexFlatL2是最简单的索引类型,会在内存中存储所有的向量,并计算所有向量间的距离来找出最近邻。

 加载数据到索引中

需要生成一些随机向量数据,并将其添加到刚刚创建的索引中。

# 生成10000个随机向量
nb = 10000
np.random.seed(1234)  # 设置随机种子以确保每次运行都得到相同结果
xb = np.random.random((nb, d)).astype('float32')# 将向量数据归一化到单位长度
xb /= np.linalg.norm(xb, axis=1, keepdims=True)# 添加向量到索引
index.add(xb)
print("Vectors added to index.")

在这个步骤中,先设定了要添加的向量数量为10000个,并生成这些向量。为使距离度量更加有效,将向量进行了归一化处理。最后调用了add方法将这些向量添加到了索引中。

执行基本查询

可以尝试使用一些查询向量来测试索引是否正常工作。

# 生成10个查询向量
nq = 10
xq = np.random.random((nq, d)).astype('float32')
xq /= np.linalg.norm(xq, axis=1, keepdims=True)# 执行搜索,返回每个查询向量的k个最近邻
k = 4
D, I = index.search(xq, k)# 输出结果
print("Distances:")
print(D)
print("Indices:")
print(I)

这里生成了10个查询向量,并设置了返回最近邻的数量为4。index.search函数执行了实际的搜索操作,并返回了两组结果:D表示查询向量到最近邻的距离,I表示这些最近邻的索引号。

评估索引性能

为了评估索引的性能,可以测量查询所需的时间,并检查返回结果的正确性。

import time# 测量搜索耗时
start_time = time.time()
D, I = index.search(xq, k)
end_time = time.time()# 计算查询时间
search_time = end_time - start_time
print(f"Search took {search_time:.4f} seconds.")# 检查结果是否合理
print("Checking results...")
assert D.shape == (nq, k)
assert I.shape == (nq, k)
print("Results are valid.")

     在这段代码中使用Python的time模块来记录搜索操作的起始和结束时间,从而计算出总的查询耗时。还通过断言检查了返回结果的形状是否符合预期,以此验证结果的有效性。

这篇关于构建高效搜索系统 - Faiss向量数据库的快速入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114111

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

查询SQL Server数据库服务器IP地址的多种有效方法

《查询SQLServer数据库服务器IP地址的多种有效方法》作为数据库管理员或开发人员,了解如何查询SQLServer数据库服务器的IP地址是一项重要技能,本文将介绍几种简单而有效的方法,帮助你轻松... 目录使用T-SQL查询方法1:使用系统函数方法2:使用系统视图使用SQL Server Configu

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom