【STM32】PWR电源控制(低功耗模式)

2024-08-28 05:28

本文主要是介绍【STM32】PWR电源控制(低功耗模式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇博客重点在于标准库函数的理解与使用,搭建一个框架便于快速开发

目录

PWR简介

修改主频 

低功耗模式

睡眠模式

停止模式

待机模式


PWR简介

PWR(Power Control)电源控制 ,负责管理STM32内部的电源供电部分,可以实现可编程电压监测器(PVD)和低功耗模式的功能

可编程电压监测器可以监控VDD电源电压,当VDD下降到PVD阀值以下或上升到PVD阀值之上时,PVD会触发中断,用于执行紧急关闭任务

低功耗模式包括睡眠模式(Sleep)、停机模式(Stop)和待机模式(Standby),可在系统空闲时,降低STM32的功耗,延长设备使用时间

电源框图

 表:VDDA和VSSA必须分别联到VDD和VSS

STM32的工作电压(VDD)为2.0~3.6V。通过内置的电压调节器提供所需的1.8V电源。 当主电源VDD掉电后,通过VBAT脚为实时时钟(RTC)和备份寄存器提供电源。VBAT脚为RTC、LSE振荡器和PC13至PC15端口供电,可以保证当主电源被切断时RTC能继续工作。

电压调节器

复位后调节器总是使能的。根据应用方式它以3种不同的模式工作。

● 运转模式:调节器以正常功耗模式提供1.8V电源(内核,内存和外设)。

● 停止模式:调节器以低功耗模式提供1.8V电源,以保存寄存器和SRAM的内容。 

● 待机模式:调节器停止供电。除了备用电路和备份域外,寄存器和SRAM的内容全部丢失。

修改主频 

 system_stm32f10x.c文件

//SystemCoreClock变量的值表示当前的系统主频频率
//SystemInit()函数配置时钟树为宏定义的时钟频率

低功耗模式

低功耗模式时,下载程序需要先按着复位键,然后点击下载程序后,立马松开复位按键

●睡眠模式(Cortex™-M3内核停止,所有外设包括Cortex-M3核心的外设,如NVIC、系统时钟(SysTick)等仍在运行)

●停止模式(所有的时钟都已停止)

●待机模式(1.8V电源关闭) 

睡眠模式

为了在睡眠模式下更多地减少功耗,进入睡眠模式前,可在执行WFI或WFE指令前关闭所有外设的时钟,也可以利用预分频器来降低外设的时钟 

在睡眠模式下,所有的I/O引脚都保持它们在运行模式时的状态

执行WFE指令需配置事件

如果执行WFE指令进入睡眠模式,则一旦发生唤醒事件时,微处理器都将从睡眠模式退出。唤 醒事件可以通过下述方式产生:

● 在外设控制寄存器中使能一个中断,而不是在NVIC(嵌套向量中断控制器)中使能,并且在 Cortex-M3系统控制寄存器中使能SEVONPEND位。当MCU从WFE中唤醒后,外设的中断 挂起位和外设的NVIC中断通道挂起位(在NVIC中断清除挂起寄存器中)必须被清除。

● 配置一个外部或内部的EXIT线为事件模式。当MCU从WFE中唤醒后,因为与事件线对应的 挂起位未被设置,不必清除外设的中断挂起位或外设的NVIC中断通道挂起位。

/*WFI指令进入睡眠模式,可被任意一个NVIC响应的中断唤醒WFE指令进入睡眠模式,可被唤醒事件唤醒
*/__WFI();//内核指令,执行WFI指令,CPU睡眠,并等待中断唤醒
//执行完WFI/WFE指令后,STM32进入睡眠模式,程序暂停运行,唤醒后程序从暂停的地方继续运行,一般先进入中断

停止模式

停止模式是在Cortex™-M3的深睡眠模式基础上结合了外设的时钟控制机制,在停止模式下电压调节器可运行在正常或低功耗模式。此时在1.8V供电区域的的所有时钟都被停止,PLL、HSI和 HSE RC振荡器的功能被禁止,SRAM和寄存器内容被保留下来。

当电压调节器处于低功耗模式下,当系统从停止模式退出时,将会有一段额外的启动延时。如果在停止模式期间保持内部调节器开启,则退出启动时间会缩短,但相应的功耗会增加。

在停止模式下,所有的I/O引脚都保持它们在运行模式时的状态。

如果正在进行闪存编程,直到对内存访问完成,系统才进入停止模式。 如果正在进行对APB的访问,直到对APB访问完成,系统才进入停止模式。

为了进入停止模式,所有的外部中断的请求位(挂起寄存器(EXTI_PR))和RTC的闹钟标志 都必须被清除,否则停止模式的进入流程将会被跳过,程序继续运行。

//初始化调用
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);//使能PWR时钟//while循环中调用下面两个函数//该函数可配置电压调节器运行在正常或低功耗模式,WFI或WFE
PWR_EnterSTOPMode(PWR_Regulator_ON, PWR_STOPEntry_WFI);	//STM32进入停止模式,并等待中断唤醒/*
执行完WFI/WFE指令后,STM32进入停止模式,程序暂停运行,唤醒后程序从暂停的地方继续运行
WFI指令进入停止模式,可被任意一个EXTI中断唤醒
WFE指令进入停止模式,可被任意一个EXTI事件唤醒
*///当一个中断或唤醒事件导致退出停止模式时,HSI RC振荡器被选为系统时钟。
SystemInit();										//唤醒后,要重新配置主频时钟

待机模式

待机模式可实现系统的最低功耗。该模式是在Cortex-M3深睡眠模式时关闭电压调节器。整个 1.8V供电区域被断电。PLL、HSI和HSE振荡器也被断电。SRAM和寄存器内容丢失。只有备份的寄存器和待机电路维持供电。

LSE和LSI分别为RTC和IWDG提供时钟信号

从待机唤醒后,除了电源控制/状态寄存器(PWR_CSR),所有寄存器被复位。 从待机模式唤醒后的代码执行等同于复位后的执行(采样启动模式引脚、读取复位向量等)。电源控制/状态寄存器(PWR_CSR)将会指示内核由待机状态退出。

待机模式下的输入/输出端口状态

在待机模式下,所有的I/O引脚处于高阻态(浮空输入),除了以下的引脚(微控制器从待机模式退出):

● 复位引脚(始终有效)

● 当被设置为防侵入或校准输出时的TAMPER引脚

● WKUP引脚的上升沿、RTC闹钟事件的上升沿、NRST引脚上外部复位、IWDG复位

EWUP:使能WKUP引脚

0:WKUP引脚为通用I/O。WKUP引脚上的事件不能将CPU从待机模式唤醒

1:WKUP引脚用于将CPU从待机模式唤醒,WKUP引脚被强置为输入下拉的配置(WKUP引脚上的上升沿将系统从待机模式唤醒)

注:在系统复位时清除这一位。

#include "stm32f10x.h"                  // Device header
#include "OLED.h"
#include "MyRTC.h"
#include "Delay.h"int main(void)
{OLED_Init();MyRTC_Init();OLED_ShowString(1, 1, "CNT:");OLED_ShowString(2, 1, "ALR:");OLED_ShowString(3, 1, "ALRF:");RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);//使能PWR时钟//1/*使能WKUP引脚*/PWR_WakeUpPinCmd(ENABLE);						//使能位于PA0的WKUP引脚,WKUP引脚上升沿唤醒待机模式//2/*设定闹钟*/uint32_t Alarm = RTC_GetCounter() + 10;			//闹钟为唤醒后当前时间的后10sRTC_SetAlarm(Alarm);							//写入闹钟值到RTC的ALR寄存器OLED_ShowNum(2, 5, Alarm,10);while(1){OLED_ShowNum(1, 5, RTC_GetCounter(),10);OLED_ShowNum(3, 6, RTC_GetFlagStatus(RTC_FLAG_ALR),1);OLED_ShowString(4, 10, "StanBy");Delay_ms(1000);OLED_ShowString(4, 10, "      ");Delay_ms(100);OLED_Clear();//OLED清屏,模拟关闭外部所有的耗电设备,以达到极度省电PWR_EnterSTANDBYMode();STM32进入停止模式,并等待指定的唤醒事件(WKUP上升沿或RTC闹钟)//执行完WFI/WFE指令后,STM32进入待机模式,唤醒后程序从头开始运行}
}

 

这篇关于【STM32】PWR电源控制(低功耗模式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113852

相关文章

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

Python实现局域网远程控制电脑

《Python实现局域网远程控制电脑》这篇文章主要为大家详细介绍了如何利用Python编写一个工具,可以实现远程控制局域网电脑关机,重启,注销等功能,感兴趣的小伙伴可以参考一下... 目录1.简介2. 运行效果3. 1.0版本相关源码服务端server.py客户端client.py4. 2.0版本相关源码1

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

模版方法模式template method

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法

【iOS】MVC模式

MVC模式 MVC模式MVC模式demo MVC模式 MVC模式全称为model(模型)view(视图)controller(控制器),他分为三个不同的层分别负责不同的职责。 View:该层用于存放视图,该层中我们可以对页面及控件进行布局。Model:模型一般都拥有很好的可复用性,在该层中,我们可以统一管理一些数据。Controlller:该层充当一个CPU的功能,即该应用程序

迭代器模式iterator

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/iterator 不暴露集合底层表现形式 (列表、 栈和树等) 的情况下遍历集合中所有的元素