C++非const的引用不能指向临时对象

2024-08-28 04:38

本文主要是介绍C++非const的引用不能指向临时对象,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C++标准的规定:非常量的引用不能指向临时对象

例如:

const string &temp = "c++"; 是正确的。

但是string &temp = “c++”; 是错误的,因为该语句首先调用string的构造函数,生成一个临时对象,但是将该临时对象复制给一个非const的引用temp就是错误的。

----------------------------------------------分割线----------------------------------------------------------

C++中有这样一种对象:它在代码中看不到,但是确实存在。它就是临时对象---由编译器定义的一个没有命名的非堆对象(non-heap object)。为什么研究临时对象?主要是为了提高程序的性能以及效率,因为临时对象的构造与析构对系统性能而言绝不是微小的影响,所以我们应该去了解它们,知道它们如何造成,从而尽可能去避免它们。

临时对象通常产生于以下4种情况:

  1. 类型装换
  2. 按值传递
  3. 按值返回
  4. 对象定义

下面我们逐一看看:

1、类型转换

它通常是为了让函数调用成功而产生临时对象。发生于 “传递某对象给一个函数,而其类型与它即将绑定上去的参数类型不同” 的时候。

例如:

[cpp] view plain copy
  1. void test(const string& str);  
  2.   
  3. char buffer[] = "buffer";  
  4.   
  5. test(buffer); // 此时发生类型转换  

此时,编译器会帮你进行类型转换:它产生一个类型为string的临时对象,该对象以buffer为参数调用string constructor。当test函数返回时,此临时对象会被自动销毁。

注意:对于引用(reference)参数而言,只有当对象被传递给一个reference-to-const参数时,转换才发生。如果对象传递给一个reference-to-non-const对象,不会发生转换。

例如:

[cpp] view plain copy
  1. void upper(string& str);  
  2.   
  3. char lower[] = "lower";  
  4.   
  5. upper(lower); // 此时不能转换,编译出错  

此时如果编译器对reference-to-non-const对象进行了类型转换,那么将会允许临时对象的值被修改。而这和程序员的期望是不一致的。试想,在上面的代码中,如果编译器允许upper运行,将lower中的值转换为大写,但是这是对临时对象而言的,char lower[]的值还是“lower”,这和你的期望一致吗?

有时候,这种隐式类型转换不是我们期望的,那么我们可以通过声明constructor为explicit来实现。explicit告诉编译器,我们反对将constructor用于类型转换。

例如:

[cpp] view plain copy
  1. explicit string(const char*);  

2、按值传递

这通常也是为了让函数调用成功而产生临时对象。当按值传递对象时,实参对形参的初始化与T formalArg = actualArg的形式等价。

例如:

[cpp] view plain copy
  1. void test(T formalArg);  
  2.   
  3. T actualArg;  
  4. test(actualArg);  

此时编译器产生的伪码为:
[cpp] view plain copy
  1. T _temp;  
  2.   
  3. _temp.T::T(acutalArg); // 通过拷贝构造函数生成_temp  
  4. g(_temp);  // 按引用传递_temp  
  5. _temp.T::~T(); // 析构_temp  

因为存在局部参数formalArg,test()的调用栈中将存在formalArg的占位符。编译器必须复制对象actualArg的内容到formalArg的占位符中。所以,此时编译器生成了临时对象。

另一个例子:

void upper(string& str) {
}
int main() {upper(string("aa"));
}
在VS2010下编译运行没错;在g++(gcc 4.4.3)下出错:
test.cpp:30: error: invalid initialization of non-const reference of type ‘std::string&’ from a temporary of type ‘std::string’
test.cpp:28: error: in passing argument 1 of ‘void test(std::string&)’
虽然main函数中显示用string的构造函数产生了临时对象作为upper函数的参数,但是upper函数形参为非const引用,因此非const的引用指向临时对象,所以出错。

3、按值返回

如果函数是按值返回的,那么编译器很可能为之产生临时对象。

例如:

[cpp] view plain copy
  1. class Integer {  
  2. public:  
  3.   friend Integer operator+(const Integer& a, const Integer& b);  
  4.     
  5.   Integer(int val=0): value(val) {  
  6.   }  
  7.     
  8.   Integer(const Integer& rhs): value(rhs.value) {  
  9.   }  
  10.     
  11.   Integer& operator=(const Integer& rhs);  
  12.     
  13.   ~Integer() {  
  14.   }  
  15.     
  16. private:  
  17.   int value;    
  18. };  
  19.   
  20. Integer operator+(const Integer& a, const Integer& b) {  
  21.   Integer retVal;  
  22.     
  23.   retVal.value = a.value + b.value;  
  24.     
  25.   return retVal;  
  26. }  
  27.   
  28. Integer c1, c2, c3;  
  29. c3 = c1 + c2;  

编译器生成的伪代码:
[cpp] view plain copy
  1. struct Integer _tempResult; // 表示占位符,不调用构造函数  
  2. operator+(_tempResult, c1, c2); // 所有参数按引用传递  
  3. c3 = _tempResult; // operator=函数执行  
  4.   
  5. Integer operator+(const Integer& _tempResult, const Integer& a, const Integer& b) {  
  6.   struct Integer retVal;  
  7.   retVal.Integer::Integer(); // Integer(int val=0)执行  
  8.     
  9.   retVal.value = a.value + b.value;  
  10.     
  11.   _tempResult.Integer::Integer(retVal); // 拷贝构造函数Integer(const Integer& rhs)执行,生成临时对象。  
  12.     
  13.   retVal.Integer::~Integer(); // 析构函数执行  
  14.     
  15.   return;  
  16. }  
  17.     
  18.   return retVal;  
  19. }  

如果对operator+进行 返回值优化(RVO:Return Value Optimization),那么临时对象将不会产生。

例如:

[cpp] view plain copy
  1. Integer operator+(const Integer& a, const Integer& b) {    
  2.   return Integer(a.value + b.value);  
  3. }  

编译器生成的伪代码:
[cpp] view plain copy
  1. Integer operator+(const Integer& _tempResult, const Integer& a, const Integer& b) {  
  2.   _tempResult.Integer::Integer(); // Integer(int val=0)执行  
  3.   _tempResult.value = a.value + b.value;  
  4.     
  5.   return;  
  6. }  

对照上面的版本,我们可以看出临时对象retVal消除了。


另外一个例子:

#include <iostream>
#include <string>
using namespace std;class Person {
public:Person::Person(string n = "a", string a = "b") {name = n;address = a;}void display() {cout << name << " " << address << endl;}
private:string name;string address;
};//test函数返回一个Person类对象
Person test() {Person per;return per;
}
int main() {//Person类的非const引用指向test函数返回值Person& pa = test(); 
}
如上的程序在VS2010下编译运行没有错误;但是在g++(gcc version 4.4.3)下编译出错:
test.cpp:33: error: invalid initialization of non-const reference of type ‘Person&’ from a temporary of type ‘Person’
按照本文开始所述的几种产生临时对象的类别看,test函数的返回会产生一个Person类的临时对象,而 main函数中用非const的引用指向该临时对象,而“C++不允许将非const的引用指向临时对象”,因此,g++编译出错(在main函数中为引用pa加上const就不会出错)。而VS之所以没出错,是因为VS在编译时由编译器做优化(返回值优化)了:test函数不会产生临时对象,而是将test函数编译为类似下面的结果:

void test(Person& __result) {__result.Person::Person();return;
}
如上的优化结果表明test函数并不会产生一个临时对象。

4、对象定义:

例如:

[cpp] view plain copy
  1. Integer i1(100); // 编译器肯定不会生成临时对象  
  2. Integer i2 = Integer(100); // 编译器可能生成临时对象  
  3. Integer i3 = 100; // 编译器可能生成临时对象  

然而,实际上大多数的编译器都会通过优化省去临时对象,所以这里的初始化形式基本上在效率上都是相同的。


备注:

临时对象的生命期:按照C++标准的说法,临时对象的摧毁,是对完整表达式求值过程中的最后一个步骤。该完整表达式照成了临时对象的产生。

完整表达式通常是指包含临时对象表达式的最外围的那个。例如:

((objA >1024)&&(objB <1024) ) ? (objA - objB) :(objB-objA)

这个表达式中一共含有5个表达式,最外围的表达式是?。任何一个子表达式所产生的任何一个临时对象,都应该在完整表达式被求值完成后,才可以销毁。

临时对象的生命周期规则有2个例外:

1、在表达式被用来初始化一个object时。例如:

[cpp] view plain copy
  1. String progName("test");  
  2. String progVersion("ver-1.0");  
  3. String progNameVersion = progName + progVersion  

如果progName + progVersion产生的临时对象在表达式求值结束后就析构,那么progNameVersion就无法产生。所以,C++标准规定:含有表达式执行结果的临时对象,应该保留到object的初始化操作完成为止。

小心这种情况:

[cpp] view plain copy
  1. const char* progNameVersion = progName + progVersion  

这个初始化操作是一定会失败的。编译器产生的伪码为:
[cpp] view plain copy
  1. String _temp;  
  2. operator+(_temp, progName, progVersion);  
  3. progNameVersion = _temp.String::operator char*();  
  4. _temp.String::~String();  

2、当一个临时对象被一个reference绑定时。例如:
[cpp] view plain copy
  1. const String& name = "C++";  

编译器产生的伪码为:
[cpp] view plain copy
  1. String _temp;  
  2. temp.String::String("C++");  
  3. const String& name = _temp;  

针对这种情况,C++标准上是这样说的:如果一个临时对象被绑定于一个reference,对象将保留,直到被初始化的reference的生命结束,或直到临时对象的生命范围结束-----看哪种情况先到达而定。


参考书籍:

1、《深度探索:C++对象模型》

2、《提高C++性能的编程技术》

3、《Effective C++》

4、《more effective C++》

5、《C++语言的设计和演化》

转载自:

http://blog.csdn.net/imyfriend/article/details/12886577


这篇关于C++非const的引用不能指向临时对象的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113754

相关文章

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C

C++实现获取本机MAC地址与IP地址

《C++实现获取本机MAC地址与IP地址》这篇文章主要为大家详细介绍了C++实现获取本机MAC地址与IP地址的两种方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实际工作中,项目上常常需要获取本机的IP地址和MAC地址,在此使用两种方案获取1.MFC中获取IP和MAC地址获取

C/C++通过IP获取局域网网卡MAC地址

《C/C++通过IP获取局域网网卡MAC地址》这篇文章主要为大家详细介绍了C++如何通过Win32API函数SendARP从IP地址获取局域网内网卡的MAC地址,感兴趣的小伙伴可以跟随小编一起学习一下... C/C++通过IP获取局域网网卡MAC地址通过win32 SendARP获取MAC地址代码#i