数据结构---顺序表---单链表

2024-08-28 02:04
文章标签 数据结构 顺序 单链

本文主要是介绍数据结构---顺序表---单链表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

目录

一、什么是程序?

 程序 = 数据结构 + 算法

二、一个程序释放优秀的两个标准 

2.1.时间复杂度

2.2.空间复杂度 

三、数据结构

3.1.数据结构间的关系

1.逻辑结构

1)线性关系

2)非线性关系

2.存储结构

1)顺序存储结构

2)链式存储结构

3)离散存储结构

4)索引存储结构

3.2.主要的数据结构

1.表

2.栈

3.队列

4.树

5.图 

四、顺序表

4.1.定义

 4.2.初始化申请空间

4.3.判断函数

​编辑 

4.4.尾添加

​编辑 

4.5.指定位置插入

​编辑 4.6.遍历

 4.7.删除

4.8.清空

​编辑 

4.8.销毁

​编辑   

五、单链表 

 六、总结


 

一、什么是程序?

 程序 = 数据结构 + 算法

二、一个程序释放优秀的两个标准 

2.1.时间复杂度

 时间复杂度:数据量增长与程序的执行时间的一种函数关系;

 时间复杂排序由小到大:O(c) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n);

2.2.空间复杂度 

空间复杂度:数据增长量与程序所占的空间的一种函数关系;

三、数据结构

3.1.数据结构间的关系

1.逻辑结构

1)线性关系

一对一----表

2)非线性关系

一对多---树

多对多---图 

2.存储结构

1)顺序存储结构
2)链式存储结构
3)离散存储结构
4)索引存储结构

3.2.主要的数据结构

1.表

2.栈

3.队列

4.树

5.图 

四、顺序表

4.1.定义

 这里以int为例子

 4.2.初始化申请空间

 

4.3.判断函数

 

4.4.尾添加

 

4.5.指定位置插入

注意:指定位置插入后,需要将该位置的往后的所有现有的向后移动 

 4.6.遍历

注意:很重要,里面的函数指针,用来操作查询到的数据的,可以用来查询和修改

 4.7.删除

4.8.清空

 

4.8.销毁

注意:销毁要释放空间 ,注意主函数

   

五、单链表 

#ifndef _LINKLIST__H_
#define _LINKLIST__H_typedef int DataType;typedef struct node
{DataType data;struct node *pnext;}LinkList;extern LinkList *CreateLinkList(void);
extern int HeadInsertLinkList(LinkList *phead, DataType data);
extern int TailInsertLinkList(LinkList *phead, DataType data);
extern int PrintLinkList(LinkList *phead);
extern int SelectLinkList(LinkList *phead, DataType data);
extern int UpdateLinkList(LinkList *phead, DataType olddata, DataType newdata);
extern int DeleteLinkList(LinkList *phead, DataType data);
extern int CleanLinkList(LinkList *phead);
extern int DestoryLinkList(LinkList *phead);#endif 
#include "linklist.h"
#include <stdio.h>
#include <stdlib.h>/* 创界一个含有头节点的单链表 */
LinkList *CreateLinkList(void)
{LinkList *phead = NULL;phead = malloc(sizeof(LinkList));if (phead == NULL){return NULL;}phead->pnext = NULL;return phead;
}/* 头插法 */
int HeadInsertLinkList(LinkList *phead, DataType data)
{LinkList *pnode = NULL;pnode = malloc(sizeof(LinkList));if (pnode == NULL){return 0;}pnode->data = data;pnode->pnext = phead->pnext;phead->pnext = pnode;return 0;}/* 尾插法 */
int TailInsertLinkList(LinkList *phead, DataType data)
{LinkList *pnode = NULL;LinkList *p = NULL;p = phead;pnode = malloc(sizeof(LinkList));if (pnode == NULL){return 0;}pnode->data = data;while (p->pnext != NULL){p++;}pnode->pnext = NULL;p->pnext = pnode;return 0;}/* 打印数据 */
int PrintLinkList(LinkList *phead)
{  LinkList *ptmp = NULL;if (phead->pnext == NULL){return -1;}ptmp = phead->pnext;while (ptmp != NULL){printf("%d ",ptmp->data);ptmp = ptmp->pnext;}printf("\n");return 0;}/* 查寻 */
int SelectLinkList(LinkList *phead, DataType data)
{LinkList *ptmp = NULL;if (phead->pnext == NULL){return -1;}ptmp = phead->pnext;while (ptmp != NULL){if (ptmp->data == data){printf("%d存在!\n", data);break;}ptmp = ptmp->pnext;}return 0;
}/* 修改 */
int UpdateLinkList(LinkList *phead, DataType olddata, DataType newdata)
{LinkList *ptmp = NULL;if (phead->pnext == NULL){return -1;}ptmp = phead->pnext;while (ptmp != NULL){if (ptmp->data == olddata){ptmp->data = newdata;break;}ptmp = ptmp->pnext;}return 0;
}/* 删除 */
int DeleteLinkList(LinkList *phead, DataType data)
{LinkList *ptmp = NULL;LinkList *qtmp = NULL;if (phead->pnext == NULL){return -1;}ptmp = phead->pnext;qtmp = phead;while (ptmp != NULL){if (ptmp->data == data){qtmp->pnext = ptmp->pnext;free(ptmp);break;}ptmp = ptmp->pnext;qtmp = qtmp->pnext;}return 0;
}/* 清空 */
int CleanLinkList(LinkList *phead)
{LinkList *ptmp = NULL;LinkList *qtmp = NULL;if (phead->pnext == NULL){return -1;}ptmp = phead->pnext;qtmp = phead->pnext;while (ptmp != NULL){ptmp = ptmp->pnext;free(qtmp);qtmp = ptmp;}phead->pnext = NULL;return 0;
}/* 销毁 */
int DestoryLinkList(LinkList *phead)
{LinkList *ptmp = NULL;LinkList *qtmp = NULL;if (phead->pnext == NULL){return -1;}ptmp = phead;qtmp = phead;while (ptmp != NULL){ptmp = ptmp->pnext;free(qtmp);qtmp = ptmp;}return 0;
}
#include "linklist.h"
#include <stdio.h>int main(void)
{LinkList *phead = NULL;phead = CreateLinkList();for (int i = 1; i < 10; i++){//HeadInsertLinkList(phead, i);TailInsertLinkList(phead, i);}PrintLinkList(phead);SelectLinkList(phead, 8);UpdateLinkList(phead, 8, 10);PrintLinkList(phead);DeleteLinkList(phead, 10);PrintLinkList(phead);CleanLinkList(phead);PrintLinkList(phead);DestoryLinkList(phead);return 0;
}

 六、总结

        顺序表和链表的区别很明显,链表空间地址不是连续的,顺序表空间地址是连续的;链表需要的空间大,但是理论上可以存储无限数据,而顺序表需要空间较小,存储的元素个数有限;顺序表访问元素比链表方便。

这篇关于数据结构---顺序表---单链表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113420

相关文章

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)