Spark on YARN

2024-08-28 00:52
文章标签 spark yarn

本文主要是介绍Spark on YARN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apache Spark 和 Apache Hadoop YARN 是两个紧密相关的项目,它们经常一起使用来处理大规模数据集。下面我将解释 Spark 如何与 YARN 配合工作,以及如何在 YARN 上运行 Spark 应用程序

Apache Spark

Apache Spark 是一个快速通用的大规模数据处理引擎,支持多种计算模式,如批处理、流处理、机器学习和图形处理。Spark 提供了一个统一的编程模型,可以在单个集群上运行各种类型的应用程序。

Apache Hadoop YARN

Apache Hadoop YARN (Yet Another Resource Negotiator) 是 Hadoop 的资源管理系统,它负责管理和调度集群上的资源(如 CPU、内存)。YARN 使 Hadoop 能够支持多种计算框架,而不仅仅是 MapReduce

Spark on YARN

Spark 可以在 YARN 上运行,这允许 Spark 应用程序利用 YARN 的资源管理和调度能力。以下是 Spark 在 YARN 上运行的一般流程:

  1. 提交 Spark 应用程序:

    • 使用 spark-submit 命令提交 Spark 应用程序到 YARN。
    • spark-submit 命令可以指定 --master yarn 来指示 Spark 应用程序将在 YARN 上运行。
  2. YARN 资源管理:

    • ResourceManager (RM) 负责接收应用程序提交请求,并将应用程序分配给可用的 NodeManagers (NMs)。
    • ResourceManager 通过 ApplicationMaster (AM) 来管理 Spark 应用程序的生命周期。
  3. ApplicationMaster (AM):

    • AM 是 Spark 应用程序在 YARN 上的一个代理,负责向 ResourceManager 请求资源,并协调 Executor 的启动和关闭。
    • AM 还负责监控 Executor 的状态,并向 ResourceManager 报告故障。
  4. Executor 启动:

    • AM 会向 ResourceManager 请求资源来启动 Executor。
    • Executor 是 Spark 应用程序的工作单元,负责执行任务并在本地缓存数据。
  5. 任务调度和执行:

    • Spark 的 Driver Program 通过 AM 与 Executor 通信,发送任务并收集结果。
    • Executor 执行任务并将结果返回给 Driver Program。

示例:提交 Spark 应用程序到 YARN

要将 Spark 应用程序提交到 YARN,可以使用 spark-submit 命令,并指定一些必要的参数,例如:

深色版本

1spark-submit \
2  --master yarn \
3  --deploy-mode cluster \
4  --class com.example.MySparkApp \
5  --conf spark.yarn.appMasterEnv.SPARK_HOME=/path/to/spark \
6  --conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=/path/to/python \
7  --num-executors 10 \
8  --executor-memory 1g \
9  --executor-cores 2 \
10  --driver-memory 1g \
11  /path/to/app.jar

这里的关键参数包括:

  • --master yarn: 指定使用 YARN 作为集群管理器。
  • --deploy-mode cluster: 指定以集群模式部署,这意味着 Driver Program 也会在集群中运行。
  • --class: 指定应用程序的主类。
  • --conf: 设置环境变量或其他配置。
  • --num-executors: 指定 Executor 的数量。
  • --executor-memory: 指定每个 Executor 的内存大小。
  • --executor-cores: 指定每个 Executor 的 CPU 核心数。
  • --driver-memory: 指定 Driver Program 的内存大小。

总结

Spark 在 YARN 上运行是一种常见的部署方式,特别是在企业环境中。这种方式充分利用了 YARN 的资源管理和调度能力,同时让 Spark 应用程序能够高效地运行在 Hadoop 集群上。如果你需要进一步的帮助或有关于具体配置的问题,请随时提问!

这篇关于Spark on YARN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113272

相关文章

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

【spark 读写数据】数据源的读写操作

通用的 Load/Save 函数 在最简单的方式下,默认的数据源(parquet 除非另外配置通过spark.sql.sources.default)将会用于所有的操作。 Parquet 是一个列式存储格式的文件,被许多其他数据处理系统所支持。Spark SQL 支持对 Parquet 文件的读写还可以自动的保存源数据的模式 val usersDF = spark.read.load("e

Spark数据介绍

从趋势上看,DataFrame 和 Dataset 更加流行。 示例场景 数据仓库和 BI 工具集成: 如果你需要处理存储在数据仓库中的结构化数据,并且希望与 BI 工具集成,那么 DataFrame 和 Dataset 是首选。 机器学习流水线: 在构建机器学习流水线时,使用 DataFrame 和 Dataset 可以更好地管理数据流,并且可以方便地与 MLlib 集成。 实时数据处理:

Mac搭建华为云平台Hadoop+spark步骤

1、安装终端和文件传输软件 下载、安装、配置 详戳数据平台搭建文件夹 Transmit 用于文件传输 iTerm2    用于终端 2、连接与登录 mac 使用iTerm2快捷登录远程服务器 Mac Transmit连接 (密码不可复制,手动输入) 3、安装jdk 4、修改主机名 Linux系统下如何修改主机名 4、安装配置hadoop

Spark-在集群上运行Spark

Spark-在集群上运行Spark

Spark—数据读取和保存

Spark—数据读取和保存

Spark源码分析之Spark Shell(上)

终于开始看Spark源码了,先从最常用的spark-shell脚本开始吧。不要觉得一个启动脚本有什么东东,其实里面还是有很多知识点的。另外,从启动脚本入手,是寻找代码入口最简单的方法,很多开源框架,其实都可以通过这种方式来寻找源码入口。 先来介绍一下Spark-shell是什么? Spark-shell是提供给用户即时交互的一个命令窗口,你可以在里面编写spark代码,然后根据你的命令立即进行

[大数据之Spark]——快速入门

本篇文档是介绍如何快速使用spark,首先将会介绍下spark在shell中的交互api,然后展示下如何使用java,scala,python等语言编写应用。可以查看 编程指南了解更多的内容。 为了良好的阅读下面的文档,最好是结合实际的练习。首先需要下载spark,然后安装hdfs,可以下载任意版本的hdfs。 Spark Shell 交互 基本操作 Spark Shell提供给用