Spark数据介绍

2024-09-06 23:12
文章标签 数据 介绍 spark

本文主要是介绍Spark数据介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从趋势上看,DataFrame 和 Dataset 更加流行。

示例场景

  1. 数据仓库和 BI 工具集成

    • 如果你需要处理存储在数据仓库中的结构化数据,并且希望与 BI 工具集成,那么 DataFrame 和 Dataset 是首选。
  2. 机器学习流水线

    • 在构建机器学习流水线时,使用 DataFrame 和 Dataset 可以更好地管理数据流,并且可以方便地与 MLlib 集成。
  3. 实时数据处理

    • 尽管 Spark Structured Streaming 主要使用 DataFrame 和 Dataset,但在某些特定的实时数据处理场景中,仍然可能会用到 RDD。

在 Apache Spark 中,RDD (弹性分布式数据集)、DataFrame 和 Dataset 是三种不同的数据抽象,它们各有特点和适用场景。下面分别介绍这三种数据结构的区别:

1. RDD (Resilient Distributed Dataset)

特点

  • 不可变性:一旦创建后,RDD 是不可变的。这意味着你不能修改一个已存在的 RDD 的内容。
  • 容错性:RDD 通过记录数据转换的历史(血缘关系 Lineage)来自动恢复丢失的数据分区。
  • 懒加载:RDD 上的操作分为转换(Transformation)和动作(Action)。转换操作定义了如何处理数据,但并不会立即执行;动作操作则会触发整个计算过程
  • 弱类型:RDD 只提供有限的编译时类型检查,大部分类型检查是在运行时进行的。
  • API:RDD 提供了丰富的低级 API,适合复杂的自定义逻辑。

用途

  • RDD 适用于需要复杂控制流或需要细粒度控制数据处理逻辑的场景
  • RDD 也适用于需要容错性的批处理作业。

2. DataFrame

特点

  • 表格结构:DataFrame 是一个分布式的行集合,每一行都有固定的模式(Schema)。
  • 强类型:DataFrame 提供了强类型的 API,支持 SQL 查询,并且具有编译时类型检查。
  • 优化执行:DataFrame 操作可以被 Catalyst 优化器优化,以提高执行效率。
  • API:DataFrame 提供了类似于 SQL 的 API,易于使用,适合结构化数据处理。

用途

  • DataFrame 适用于处理结构化数据,特别是那些可以通过 SQL 类似查询语言来表达的数据处理任务。
  • DataFrame 也适用于需要快速开发周期的应用,因为它提供了更多的内置功能和支持。

3. Dataset

特点

  • 结合了 RDD 和 DataFrame 的优点:Dataset 是一个强类型的分布式数据集,既有 DataFrame 的结构化特性,也有类似 RDD 的 API。
  • 强类型:Dataset 支持编译时类型检查,提高了代码的安全性和可维护性。
  • 优化执行:Dataset 操作也可以被 Catalyst 优化器优化。
  • API:Dataset 提供了既像 RDD 又像 DataFrame 的 API,可以使用 SQL 语法,也可以使用函数式编程风格。

用途

  • Dataset 适用于需要结构化数据处理,同时也需要一定程度的自定义逻辑的情况。
  • Dataset 也适用于需要高性能和类型安全的应用。

总结

  • RDD适合需要高度定制化的数据处理逻辑,对容错性要求高的批处理任务
  • DataFrame适合处理结构化数据,需要快速开发周期,易于使用 SQL 查询的场景
  • Dataset:结合了 RDD 和 DataFrame 的优点,提供了类型安全和优化执行的能力,适合需要结构化数据处理同时需要一定程度自定义逻辑的情况。

这篇关于Spark数据介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143388

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi