Spark数据介绍

2024-09-06 23:12
文章标签 数据 介绍 spark

本文主要是介绍Spark数据介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从趋势上看,DataFrame 和 Dataset 更加流行。

示例场景

  1. 数据仓库和 BI 工具集成

    • 如果你需要处理存储在数据仓库中的结构化数据,并且希望与 BI 工具集成,那么 DataFrame 和 Dataset 是首选。
  2. 机器学习流水线

    • 在构建机器学习流水线时,使用 DataFrame 和 Dataset 可以更好地管理数据流,并且可以方便地与 MLlib 集成。
  3. 实时数据处理

    • 尽管 Spark Structured Streaming 主要使用 DataFrame 和 Dataset,但在某些特定的实时数据处理场景中,仍然可能会用到 RDD。

在 Apache Spark 中,RDD (弹性分布式数据集)、DataFrame 和 Dataset 是三种不同的数据抽象,它们各有特点和适用场景。下面分别介绍这三种数据结构的区别:

1. RDD (Resilient Distributed Dataset)

特点

  • 不可变性:一旦创建后,RDD 是不可变的。这意味着你不能修改一个已存在的 RDD 的内容。
  • 容错性:RDD 通过记录数据转换的历史(血缘关系 Lineage)来自动恢复丢失的数据分区。
  • 懒加载:RDD 上的操作分为转换(Transformation)和动作(Action)。转换操作定义了如何处理数据,但并不会立即执行;动作操作则会触发整个计算过程
  • 弱类型:RDD 只提供有限的编译时类型检查,大部分类型检查是在运行时进行的。
  • API:RDD 提供了丰富的低级 API,适合复杂的自定义逻辑。

用途

  • RDD 适用于需要复杂控制流或需要细粒度控制数据处理逻辑的场景
  • RDD 也适用于需要容错性的批处理作业。

2. DataFrame

特点

  • 表格结构:DataFrame 是一个分布式的行集合,每一行都有固定的模式(Schema)。
  • 强类型:DataFrame 提供了强类型的 API,支持 SQL 查询,并且具有编译时类型检查。
  • 优化执行:DataFrame 操作可以被 Catalyst 优化器优化,以提高执行效率。
  • API:DataFrame 提供了类似于 SQL 的 API,易于使用,适合结构化数据处理。

用途

  • DataFrame 适用于处理结构化数据,特别是那些可以通过 SQL 类似查询语言来表达的数据处理任务。
  • DataFrame 也适用于需要快速开发周期的应用,因为它提供了更多的内置功能和支持。

3. Dataset

特点

  • 结合了 RDD 和 DataFrame 的优点:Dataset 是一个强类型的分布式数据集,既有 DataFrame 的结构化特性,也有类似 RDD 的 API。
  • 强类型:Dataset 支持编译时类型检查,提高了代码的安全性和可维护性。
  • 优化执行:Dataset 操作也可以被 Catalyst 优化器优化。
  • API:Dataset 提供了既像 RDD 又像 DataFrame 的 API,可以使用 SQL 语法,也可以使用函数式编程风格。

用途

  • Dataset 适用于需要结构化数据处理,同时也需要一定程度的自定义逻辑的情况。
  • Dataset 也适用于需要高性能和类型安全的应用。

总结

  • RDD适合需要高度定制化的数据处理逻辑,对容错性要求高的批处理任务
  • DataFrame适合处理结构化数据,需要快速开发周期,易于使用 SQL 查询的场景
  • Dataset:结合了 RDD 和 DataFrame 的优点,提供了类型安全和优化执行的能力,适合需要结构化数据处理同时需要一定程度自定义逻辑的情况。

这篇关于Spark数据介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1143388

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h