如何理解概率分布函数和概率密度函数?

2024-08-27 18:48

本文主要是介绍如何理解概率分布函数和概率密度函数?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我的理解:

当是离散型时,概率函数为pi=P(X=ai)(i=1,2,3,4,5,6),每次只能取一个点的概率;把所有可能的离散型随机变量的值分布和值的概率都列举出来那就是概率分布;概率分布函数就是在某一个区间内概率发生的情况,也就是概率函数取值的累加结果,例如F(X)=P(X<=a) =X取值小于等于a时的概率和

当是连续性时,概率密度函数(对应于离散型的概率函数)有具体的意义,但是不能直接对等概率,只能表示某一点处概率变化的情况,类似于物理中的速度;概率分布函数(对应于离散型的概率分布函数),表示某一个区间内的某件事物发生的概率。比如:

公式P(a<=X<=b)和F(b)、F(a)就是概率分布函数,积分内的(x)就是概率密度函数。就好比物理中某个时刻的速度,你不能说某个时刻的距离,只有当你处于某一段时间内(不管长短),这时才能让其表示距离。

概率密度能为负数吗?

通俗的讲:概率密度的概念是某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。所以不能为负喽!!

先从离散型随机变量和连续性随机变量说起

对于如何分辨离散型随机变量和连续性随机变量,我这里先给大家举几个例子:

1、一批电子元件的次品数目。

2、同样是一批电子元件,他们的寿命情况。

在第一个例子中,电子元件的次数是一个在现实中可以区分的值,我们用肉眼就能看出,这一堆元件里,次品的个数。但是在第二个例子中,这个寿命它是一个你无法用肉眼数的过来的数字,它需要你用笔记下来,变成一个数字你才能感受它。在这两个例子中,第一例子涉及的随机变量就是离散型随机变量,第二个涉及的变量就是连续型随机变量。

在贾俊平老师的《统计学》教材中,给出了这样的区分:

如果随机变量的值可以都可以逐个列举出来,则为离散型随机变量。如果随机变量X的取值无法逐个列举则为连续型变量。

我始终觉得,贾老师这么说,对于我们这些脑子笨又爱钻牛角尖的学生来说,还是不太好理解。所以我就告诉大家一个不一定非常严谨,但是绝对好区分的办法。

只要是能够用我们日常使用的量词可以度量的取值,比如次数,个数,块数等都是离散型随机变量。只要无法用这些量词度量,且取值可以取到小数点2位,3位甚至无限多位的时候,那么这个变量就是连续型随机变量!

对了,如果你连随机变量这个概念还不理解的话,我送你一句贾俊平老师的话:

如果微积分是研究变量的数学,那么概率论与数理统计是研究随机变量的数学。

再来理解离散型随机变量的概率分布,概率函数和分布函数

在理解概率分布函数和概率密度函数之前,我们先来看看概率分布和概率函数是咋回事。一下子又冒出来两个长得差不多的概念!没事,他们长得差不多,实际代表的含义其实也差不多!

在讲概率函数和概率分布之前,我想先讲讲为什么我们花这么大的力气去研究这个概念。因为它实在太重要了,为什么呢?在这里,我直接引用陈希孺老师在他所著的《概率论与数理统计》这本书中说的:

研究一个随机变量,不只是要看它能取哪些值,更重要的是它取各种值的概率如何!

这句是本文的核心内容,你要牢牢记得,我们这篇文章里的所有概念都在是描述一件东西,那就是概率!概率!概率!什么概率密度啦,概率分布啦,概率函数啦,都是在描述概率!

概率分布和概率函数这两个概念,我想先从概率函数开始讲。概率函数,就是用函数的形式来表达概率。

pi=P(X=ai)(i=1,2,3,4,5,6)

在这个函数里,自变量(X)是随机变量的取值,因变量(pi)是取值的概率。这就叫啥,这叫用数学语言来表示自然现象!它就代表了每个取值的概率,所以顺理成章的它就叫做了X的概率函数。从公式上来看,概率函数一次只能表示一个取值的概率。比如P(X=1)=1/6,这代表用概率函数的形式来表示,当随机变量取值为1的概率为1/6,一次只能代表一个随机变量的取值。

接下来讲概率分布,顾名思义就是概率的分布,这个概率分布还是讲概率的。我认为在理解这个概念时,关键不在于“概率”两个字,而在于“分布”这两个字。为了理解“分布”这个词,我们来看一张图。

在很多教材中,这样的列表都被叫做离散型随机变量的“概率分布”。其实严格来说,它应该叫“离散型随机变量的值分布和值的概率分布列表”,这个名字虽然比“概率分布”长了点,但是对于我们这些笨学生来说,肯定好理解了很多。因为这个列表,上面是值,下面是这个取值相应取到的概率,而且这个列表把所有可能出现的情况全部都列出来了!

举个例子吧,一颗6面的骰子,有1,2,3,4,5,6这6个取值,每个取值取到的概率都为1/6。那么你说这个列表是不是这个骰子取值的”概率分布“?

长得挺像的,上面是取值,下面是概率,这应该就是骰子取值的“概率分布”了吧!大错特错!少了一个最重要的条件!对于一颗骰子的取值来说,它列出的不是全部的取值,把6漏掉了!

这么一说你就应该明白概率分布是个什么鬼了吧。说完概率分布,就该说说分布函数了。这个分布函数又是个简化版的东西!我真的很讨厌我们的教材中老是故弄玄虚,卖弄概念!你就老老实实的写成”概率分布函数“,让我们这些笨学生好理解一些不行吗?

看看下图中的分布律!这又是一个不统一叫法的丑恶典型!这里的分布律明明就是我们刚刚讲的“概率函数”,完全就是一个东西嘛!但是我知道很多教材就是叫分布律的。

我们来看看图上的公式,其中的F(x)就代表概率分布函数啦。这个符号的右边是一个长的很像概率函数的公式,但是其中的等号变成了大于等于号的公式。你再往右看看,这是一个一个的概率函数的累加!发现概率分布函数的秘密了吗?它其实根本不是个新事物,它就是概率函数取值的累加结果!所以它又叫累积概率函数!其实,我觉得叫它累积概率函数还更好理解!!

概率函数和概率分布函数就像是一个硬币的两面,它们都只是描述概率的不同手段!

连续型随机变量也有“概率函数”和“概率分布函数”吗?

有!连续型随机变量也有它的“概率函数”和“概率分布函数”,但是连续型随机变量的“概率函数”换了一个名字,叫做“概率密度函数”!为啥要这么叫呢?我们还是借用大师的话来告诉你,在陈希孺老师所著的《概率论与数理统计》这本书中,

如果这么解析你还是不太懂的话,看看下面的这个公式:

概率密度函数用数学公式表示就是一个定积分的函数,定积分在数学中是用来求面积的,而在这里,你就把概率表示为面积即可!

 

左边是F(x)连续型随机变量分布函数画出的图形,右边是f(x)连续型随机变量的概率密度函数画出的图像,它们之间的关系就是,概率密度函数是分布函数的导函数。

两张图一对比,你就会发现,如果用右图中的面积来表示概率,利用图形就能很清楚的看出,哪些取值的概率更大!这样看起来是不是特别直观,特别爽!!所以,我们在表示连续型随机变量的概率时,用f(x)概率密度函数来表示,是非常好的!

这篇文章只是我个人对于这些概念的一些比较取巧的理解,如果你想更加深刻,精确的理解这些概念,我推荐大家读一下陈希孺老师的《概率论与数理统计》这本书,这本书对于这些概念的理解非常有帮助!
 

Q:概率密度函数在某一点的值有什么意义?

A:比较容易理解的意义,某点的 概率密度函数 即为 概率在该点的变化率(或导数)。很容易误以为 该点概率密度值 为 概率值.

比如: 距离(概率)和速度(概率密度)的关系.

某一点的速度, 不能以为是某一点的距离
没意义,因为距离是从XX到XX的概念
所以, 概率也需要有个区间.
这个区间可以是x的邻域(可以无限趋近于0)。对x邻域内的f(x)进行积分,可以求得这个邻域的面积,就代表了这个邻域所代表这个事件发生的概率。

参考:

https://www.jianshu.com/p/b570b1ba92bb

https://blog.csdn.net/anshuai_aw1/article/details/82626468 

这篇关于如何理解概率分布函数和概率密度函数?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112484

相关文章

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87