本文主要是介绍【Keras】Sequential,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
开始使用 Keras Sequential 顺序模型
指定输入数据的尺寸
模型编译
模型训练
样例
类似 VGG 的卷积神经网络
开始使用 Keras Sequential 顺序模型
顺序模型是多个网络层的线性堆叠。
你可以通过将网络层实例的列表传递给 Sequential
的构造器,来创建一个 Sequential
模型:
from keras.models import Sequential
from keras.layers import Dense, Activationmodel = Sequential([Dense(32, input_shape=(784,)),Activation('relu'),Dense(10),Activation('softmax'),
])
也可以简单地使用 .add()
方法将各层添加到模型中:
model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Activation('relu'))
指定输入数据的尺寸
模型需要知道它所期望的输入的尺寸。出于这个原因,顺序模型中的第一层(且只有第一层,因为下面的层可以自动地推断尺寸)需要接收关于其输入尺寸的信息。有几种方法来做到这一点:
- 传递一个
input_shape
参数给第一层。它是一个表示尺寸的元组 (一个由整数或None
组成的元组,其中None
表示可能为任何正整数)。在input_shape
中不包含数据的 batch 大小。 - 某些 2D 层,例如
Dense
,支持通过参数input_dim
指定输入尺寸,某些 3D 时序层支持input_dim
和input_length
参数。 - 如果你需要为你的输入指定一个固定的 batch 大小(这对 stateful RNNs 很有用),你可以传递一个
batch_size
参数给一个层。如果你同时将batch_size=32
和input_shape=(6, 8)
传递给一个层,那么每一批输入的尺寸就为(32,6,8)
。
因此,下面的代码片段是等价的:
model = Sequential()
model.add(Dense(32, input_shape=(784,)))
model = Sequential()
model.add(Dense(32, input_dim=784))
模型编译
在训练模型之前,您需要配置学习过程,这是通过 compile
方法完成的。它接收三个参数:
- 优化器 optimizer。它可以是现有优化器的字符串标识符,如
rmsprop
或adagrad
,也可以是 Optimizer 类的实例。详见:optimizers。 - 损失函数 loss,模型试图最小化的目标函数。它可以是现有损失函数的字符串标识符,如
categorical_crossentropy
或mse
,也可以是一个目标函数。详见:losses。 - 评估标准 metrics。对于任何分类问题,你都希望将其设置为
metrics = ['accuracy']
。评估标准可以是现有的标准的字符串标识符,也可以是自定义的评估标准函数。
# 多分类问题
model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])# 二分类问题
model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['accuracy'])# 均方误差回归问题
model.compile(optimizer='rmsprop',loss='mse')# 自定义评估标准函数
import keras.backend as Kdef mean_pred(y_true, y_pred):return K.mean(y_pred)model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['accuracy', mean_pred])
模型训练
Keras 模型在输入数据和标签的 Numpy 矩阵上进行训练。为了训练一个模型,你通常会使用 fit
函数。文档详见此处。
# 对于具有 2 个类的单输入模型(二进制分类):model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['accuracy'])# 生成虚拟数据
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))# 训练模型,以 32 个样本为一个 batch 进行迭代
model.fit(data, labels, epochs=10, batch_size=32)
# 对于具有 10 个类的单输入模型(多分类分类):model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])# 生成虚拟数据
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(10, size=(1000, 1))# 将标签转换为分类的 one-hot 编码
one_hot_labels = keras.utils.to_categorical(labels, num_classes=10)# 训练模型,以 32 个样本为一个 batch 进行迭代
model.fit(data, one_hot_labels, epochs=10, batch_size=32)
样例
这里有几个可以帮助你起步的例子!
在 examples 目录 中,你可以找到真实数据集的示例模型:
- CIFAR10 小图片分类:具有实时数据增强的卷积神经网络 (CNN)
- IMDB 电影评论情感分类:基于词序列的 LSTM
- Reuters 新闻主题分类:多层感知器 (MLP)
- MNIST 手写数字分类:MLP & CNN
- 基于 LSTM 的字符级文本生成
...以及更多。
类似 VGG 的卷积神经网络
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD# 生成虚拟数据
x_train = np.random.random((100, 100, 100, 3))
y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10)
x_test = np.random.random((20, 100, 100, 3))
y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10)model = Sequential()
# 输入: 3 通道 100x100 像素图像 -> (100, 100, 3) 张量。
# 使用 32 个大小为 3x3 的卷积滤波器。
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3)))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd)model.fit(x_train, y_train, batch_size=32, epochs=10)
score = model.evaluate(x_test, y_test, batch_size=32)
这篇关于【Keras】Sequential的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!