基数排序算法及优化(java)

2024-08-27 18:12

本文主要是介绍基数排序算法及优化(java),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.1 引言

1.2 基数排序的历史

1.3 基数排序的基本原理

1.3.1 基数排序的过程

1.3.2 基数排序算法流程

1.4 基数排序的Java实现

1.4.1 简单实现

1.4.2 代码解释

1.4.3 使用场景

1.4.4 实际应用案例

1.5 基数排序的时间复杂度

1.6 基数排序的空间复杂度

1.7 基数排序的稳定性

1.8 基数排序的优化方案

1.8.1 并行处理

1.8.2 减少空间占用

1.8.3 Java示例代码

1.8.4 代码解释

1.9 总结

1.1 引言

基数排序是一种非比较排序算法,适用于整数或字符串等类型的排序。它通过对整数按位进行排序来达到整个数组排序的目的。基数排序通常分为两种类型:最低有效位(Least Significant Digit, LSD)排序和最高有效位(Most Significant Digit, MSD)排序。本文将详细介绍基数排序的工作原理,并通过具体案例来阐述其应用。此外,还将探讨基数排序的不同优化方案,并给出相应的Java代码示例。

1.2 基数排序的历史

基数排序的思想可以追溯到19世纪末期,最早是由Harold H. Seward在1954年的论文中提出的。随着时间的发展,基数排序因其简单高效的特点成为了计算机科学中一个重要的排序算法之一。

基数排序之所以重要,是因为它可以在O(d(n+k)) 的时间内完成排序,其中 d 是数字的位数,n 是数组的长度,k 是基数(通常是10)。这种时间复杂度使得基数排序非常适合处理大规模数据集,尤其是在数据的位数较少的情况下。

1.3 基数排序的基本原理

1.3.1 基数排序的过程

基数排序的基本过程包括以下几个主要步骤:

  1. 确定数字的位数:找到数组中最大的数字,以此来确定位数。
  2. 按位排序:从最低位开始,依次对每一位进行排序。
  3. 稳定排序:使用一种稳定的排序算法(如计数排序)来处理每一位上的数字。

1.3.2 基数排序算法流程

  1. 确定数字的位数:找到数组中最大的数字,以此来确定位数。
  2. 按位排序:从最低位开始,依次对每一位进行排序。
  3. 稳定排序:使用计数排序来处理每一位上的数字。
  4. 重复步骤2和3:直到所有位都被排序过为止。

1.4 基数排序的Java实现

1.4.1 简单实现

下面是一个简单的基数排序Java代码示例,其中包含了详细的注释和说明:

1import java.util.Arrays;
2
3/**
4 * 基数排序类,用于实现基数排序算法。
5 */
6public class RadixSort {
7
8    /**
9     * 打印数组中的元素。
10     *
11     * @param array 需要打印的数组
12     */
13    private static void printArray(int[] array) {
14        for (int value : array) {
15            System.out.print(value + " ");
16        }
17        System.out.println();
18    }
19
20    /**
21     * 基数排序方法。
22     *
23     * @param array 需要排序的数组
24     */
25    public static void radixSort(int[] array) {
26        // 确定最大值
27        int max = findMax(array);
28        // 按位进行排序
29        for (int exp = 1; max / exp > 0; exp *= 10) {
30            countingSortByDigit(array, exp);
31        }
32    }
33
34    /**
35     * 按照特定位数进行计数排序。
36     *
37     * @param array 需要排序的数组
38     * @param exp   当前位数的基数
39     */
40    private static void countingSortByDigit(int[] array, int exp) {
41        int n = array.length;
42        int[] output = new int[n]; // 输出数组
43        int[] count = new int[10]; // 计数数组
44
45        // 计数
46        for (int i = 0; i < n; i++) {
47            int index = (array[i] / exp) % 10;
48            count[index]++;
49        }
50
51        // 累计入数
52        for (int i = 1; i < 10; i++) {
53            count[i] += count[i - 1];
54        }
55
56        // 输出排序后的数组
57        for (int i = n - 1; i >= 0; i--) {
58            int index = (array[i] / exp) % 10;
59            output[count[index] - 1] = array[i];
60            count[index]--;
61        }
62
63        // 复制排序后的数组回原数组
64        System.arraycopy(output, 0, array, 0, n);
65    }
66
67    /**
68     * 查找数组中的最大值。
69     *
70     * @param array 数组
71     * @return 最大值
72     */
73    private static int findMax(int[] array) {
74        int max = array[0];
75        for (int value : array) {
76            if (value > max) {
77                max = value;
78            }
79        }
80        return max;
81    }
82
83    /**
84     * 主方法,用于测试基数排序算法。
85     */
86    public static void main(String[] args) {
87        int[] array = {170, 45, 75, 90, 802, 24, 2, 66};
88        System.out.println("原始数组:");
89        printArray(array);
90
91        radixSort(array);
92
93        System.out.println("排序后的数组:");
94        printArray(array);
95    }
96}import java.util.Arrays;/*** 基数排序类,用于实现基数排序算法。*/
public class RadixSort {/*** 打印数组中的元素。** @param array 需要打印的数组*/private static void printArray(int[] array) {for (int value : array) {System.out.print(value + " ");}System.out.println();}/*** 基数排序方法。** @param array 需要排序的数组*/public static void radixSort(int[] array) {// 确定最大值int max = findMax(array);// 按位进行排序for (int exp = 1; max / exp > 0; exp *= 10) {countingSortByDigit(array, exp);}}/*** 按照特定位数进行计数排序。** @param array 需要排序的数组* @param exp   当前位数的基数*/private static void countingSortByDigit(int[] array, int exp) {int n = array.length;int[] output = new int[n]; // 输出数组int[] count = new int[10]; // 计数数组// 计数for (int i = 0; i < n; i++) {int index = (array[i] / exp) % 10;count[index]++;}// 累计入数for (int i = 1; i < 10; i++) {count[i] += count[i - 1];}// 输出排序后的数组for (int i = n - 1; i >= 0; i--) {int index = (array[i] / exp) % 10;output[count[index] - 1] = array[i];count[index]--;}// 复制排序后的数组回原数组System.arraycopy(output, 0, array, 0, n);}/*** 查找数组中的最大值。** @param array 数组* @return 最大值*/private static int findMax(int[] array) {int max = array[0];for (int value : array) {if (value > max) {max = value;}}return max;}/*** 主方法,用于测试基数排序算法。*/public static void main(String[] args) {int[] array = {170, 45, 75, 90, 802, 24, 2, 66};System.out.println("原始数组:");printArray(array);radixSort(array);System.out.println("排序后的数组:");printArray(array);}
}

1.4.2 代码解释

  • 确定数字的位数:找到数组中最大的数字,以此来确定位数。
  • 按位排序:从最低位开始,依次对每一位进行排序。
  • 稳定排序:使用计数排序来处理每一位上的数字。

1.4.3 使用场景

基数排序适用于以下情况:

  • 数据范围有限:如果数组中的元素取值范围很小,基数排序可以非常高效。
  • 数据量大:对于大规模数据集,尤其是当数据的位数相对较小的时候,基数排序可以提供非常快的排序速度。
  • 需要稳定排序:基数排序是一种稳定的排序算法,适用于需要保持相同元素相对顺序的情况。

1.4.4 实际应用案例

案例描述:假设我们有一个包含100000个整数的数组,这些整数的范围在1到10000之间。我们需要快速地对这些整数进行排序。

解决方案:使用基数排序可以有效地解决这个问题。

  1. 确定数字的位数:找到数组中最大的数字,以此来确定位数。
  2. 按位排序:从最低位开始,依次对每一位进行排序。
  3. 稳定排序:使用计数排序来处理每一位上的数字。

具体步骤

  1. 确定数字的位数:找到数组中最大的数字,以此来确定位数。
  2. 按位排序:从最低位开始,依次对每一位进行排序。
  3. 稳定排序:使用计数排序来处理每一位上的数字。

效果:由于基数排序的时间复杂度为O(d(n+k)),并且在这种情况下 k 和 d 相对较小,因此它可以快速完成排序任务。

1.5 基数排序的时间复杂度

基数排序的时间复杂度主要由按位排序和稳定排序两部分组成。

  • 按位排序:每一轮排序的时间复杂度为 O(n+k)。
  • 稳定排序:使用计数排序作为稳定排序算法的时间复杂度为O(n+k)。

因此,基数排序的整体时间复杂度为O(d(n+k)),其中 d 是数字的位数,n 是数组的长度,k 是基数(通常是10)。

基数排序的时间复杂度可以通过分析按位排序和稳定排序的过程得出。按位排序的时间复杂度基于输入数组的长度和基数,而稳定排序的时间复杂度同样基于输入数组的长度和基数。

1.6 基数排序的空间复杂度

基数排序的空间复杂度为O(n+k),其中 n 是数组的长度,k 是基数。

1.7 基数排序的稳定性

基数排序是一种稳定的排序算法。这意味着相同元素的相对顺序在排序过程中不会发生改变。

1.8 基数排序的优化方案

1.8.1 并行处理

通过多线程或分布式计算可以提高基数排序的速度。

1.8.2 减少空间占用

如果元素的取值范围很大,可以考虑使用更紧凑的数据结构来减少空间占用。

1.8.3 Java示例代码

下面是一个考虑了更多优化因素的基数排序Java代码示例,其中包含了详细的注释和说明:

import java.util.Arrays;/*** 基数排序类,用于实现基数排序算法。*/
public class RadixSortOptimized {/*** 打印数组中的元素。** @param array 需要打印的数组*/private static void printArray(int[] array) {for (int value : array) {System.out.print(value + " ");}System.out.println();}/*** 基数排序方法。** @param array 需要排序的数组*/public static void radixSort(int[] array) {// 确定最大值int max = findMax(array);// 按位进行排序for (int exp = 1; max / exp > 0; exp *= 10) {countingSortByDigit(array, exp);}}/*** 按照特定位数进行计数排序。** @param array 需要排序的数组* @param exp   当前位数的基数*/private static void countingSortByDigit(int[] array, int exp) {int n = array.length;int[] output = new int[n]; // 输出数组int[] count = new int[10]; // 计数数组// 计数for (int i = 0; i < n; i++) {int index = (array[i] / exp) % 10;count[index]++;}// 累计入数for (int i = 1; i < 10; i++) {count[i] += count[i - 1];}// 输出排序后的数组for (int i = n - 1; i >= 0; i--) {int index = (array[i] / exp) % 10;output[count[index] - 1] = array[i];count[index]--;}// 复制排序后的数组回原数组System.arraycopy(output, 0, array, 0, n);}/*** 查找数组中的最大值。** @param array 数组* @return 最大值*/private static int findMax(int[] array) {int max = array[0];for (int value : array) {if (value > max) {max = value;}}return max;}/*** 主方法,用于测试基数排序算法。*/public static void main(String[] args) {int[] array = {170, 45, 75, 90, 802, 24, 2, 66};System.out.println("原始数组:");printArray(array);radixSort(array);System.out.println("排序后的数组:");printArray(array);}
}

1.8.4 代码解释

  • 确定数字的位数:找到数组中最大的数字,以此来确定位数。
  • 按位排序:从最低位开始,依次对每一位进行排序。
  • 稳定排序:使用计数排序来处理每一位上的数字。
  • 优化:在这个版本中,我们减少了不必要的循环,并使用了数组复制方法来简化代码。

1.9 总结

基数排序是一种非比较排序算法,适用于整数或字符串等类型的排序。通过合理选择按位排序和稳定排序的方法,可以大大提高基数排序的效率。无论是在理论研究还是实际工程中,基数排序都是一个值得深入了解的重要算法。

这篇关于基数排序算法及优化(java)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112399

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("