【faiss】使用的一点总结

2024-08-27 17:58
文章标签 总结 使用 一点 faiss

本文主要是介绍【faiss】使用的一点总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1,支持两种相似性计算方法:L2距离(即欧式距离)和点乘(归一化的向量点乘即cosine相似度);

2,按照是否编码压缩数据可以分为两类算法,使用压缩的算法可以在单台机器上处理十亿级别的向量规模;

3,并非线程安全的——不支持并行添加向量或搜索与添加的并行;仅在CPU模式下支持并行搜索;

4,只有继承了IndexIVF 的算法才支持向量的 remove() 操作,但由于是连续存储,remove的时间复杂度是O(n),建议另外维护一个列表记录被删除的或尚存的向量;

5,faiss 针对批量搜索做了优化;

6,IndexPQ, IndexIVFFlat, IndexIVFPQ, IndexIVFPQR 需要训练;

7,不支持重新训练,建议新建一个索引;

8,只接受 32-bit 浮点类型的输入数据;

9,使用 index = faiss.index_factory(dim, "PCA32,IVF100,PQ8")
这种形式创建索引更灵活,此处类型参数可解释为:使用PCA降维将原始向量降至32维,使用 IVF 建立索引,子list(即bucket 分桶)个数为100,使用 Product Quantizer (乘积量化) 将每个向量压缩编码成 8 字节;等价于

num_list = 64 dim = 64 bytes_per_vector = 8 bits_per_sub_vector = 8 quantizer= faiss.IndexFlatL2(dim) index = faiss.IndexIVFPQ(quantizer, dim, num_list, bytes_per_vector, bits_per_sub_vector)

10,索引类型的选择

* 如果需要精确的搜索结果,不要降维、不要量化,使用 Flat,同时,使用Flat 意味着数据不会被压缩,将占用同等大小的内存;
* 如果内存很紧张,可以使用 PCA 降维、PQ 量化编码,来减少内存占用,最终占用的内存大小约等于 <降维后的向量维度>
* <量化后的每个向量的字节数> * <向量个数>;
如果量化编码后的字节数大于64,推荐使用SQx 替换PQx,准确度相同但速度会更快;为了便于量化编码,可以使用 OPQx_y 先对向量做线性变换,y
必须是编码后字节数x的倍数,但最好小于维度dim和4*x;
* 如果总向量个数 N 小于 1百万,推荐使用  IVFx ,x 的选值介于 4*sqrt(N) 和 16*sqrt(N)
之间,训练数据的大小至少要是x的30倍;如果总向量个数 N 大于 1百万、小于 1千万,推荐使用 IMI2x10,实际内部聚类个数是 2 ^ (2 *10),将需要64 * 2 ^ 10 个向量参与训练;如果总向量个数 N 大于 1千万、小于 1亿,推荐使用 IMI2x12;如果总向量个数 N 大于1亿、小于 10亿,推荐使用 IMI2x14;IMI方法不支持GPU;* IndexIVF 天生支持 add_with_ids 方法,对于不支持 add_with_ids方法的类型,可以使用IndexIDMap 辅助* index = faiss.IndexFlatL2(xb.shape[1]) ids = np.arange(xb.shape[0])
index.add_with_ids(xb, ids) # this will crash, because IndexFlatL2 does not support add_with_ids index2 = faiss.IndexIDMap(index) index2.add_with_ids(xb, ids) # works, the vectors are stored in the underlying index
 

4,常见问题:

暴力搜索比较慢,解决方法:
export OMP_WAIT_POLICY=PASSIVE

这篇关于【faiss】使用的一点总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112372

相关文章

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

Python使用Matplotlib和Seaborn绘制常用图表的技巧

《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Linux内核定时器使用及说明

《Linux内核定时器使用及说明》文章详细介绍了Linux内核定时器的特性、核心数据结构、时间相关转换函数以及操作API,通过示例展示了如何编写和使用定时器,包括按键消抖的应用... 目录1.linux内核定时器特征2.Linux内核定时器核心数据结构3.Linux内核时间相关转换函数4.Linux内核定时

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco