【faiss】使用的一点总结

2024-08-27 17:58
文章标签 总结 使用 一点 faiss

本文主要是介绍【faiss】使用的一点总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1,支持两种相似性计算方法:L2距离(即欧式距离)和点乘(归一化的向量点乘即cosine相似度);

2,按照是否编码压缩数据可以分为两类算法,使用压缩的算法可以在单台机器上处理十亿级别的向量规模;

3,并非线程安全的——不支持并行添加向量或搜索与添加的并行;仅在CPU模式下支持并行搜索;

4,只有继承了IndexIVF 的算法才支持向量的 remove() 操作,但由于是连续存储,remove的时间复杂度是O(n),建议另外维护一个列表记录被删除的或尚存的向量;

5,faiss 针对批量搜索做了优化;

6,IndexPQ, IndexIVFFlat, IndexIVFPQ, IndexIVFPQR 需要训练;

7,不支持重新训练,建议新建一个索引;

8,只接受 32-bit 浮点类型的输入数据;

9,使用 index = faiss.index_factory(dim, "PCA32,IVF100,PQ8")
这种形式创建索引更灵活,此处类型参数可解释为:使用PCA降维将原始向量降至32维,使用 IVF 建立索引,子list(即bucket 分桶)个数为100,使用 Product Quantizer (乘积量化) 将每个向量压缩编码成 8 字节;等价于

num_list = 64 dim = 64 bytes_per_vector = 8 bits_per_sub_vector = 8 quantizer= faiss.IndexFlatL2(dim) index = faiss.IndexIVFPQ(quantizer, dim, num_list, bytes_per_vector, bits_per_sub_vector)

10,索引类型的选择

* 如果需要精确的搜索结果,不要降维、不要量化,使用 Flat,同时,使用Flat 意味着数据不会被压缩,将占用同等大小的内存;
* 如果内存很紧张,可以使用 PCA 降维、PQ 量化编码,来减少内存占用,最终占用的内存大小约等于 <降维后的向量维度>
* <量化后的每个向量的字节数> * <向量个数>;
如果量化编码后的字节数大于64,推荐使用SQx 替换PQx,准确度相同但速度会更快;为了便于量化编码,可以使用 OPQx_y 先对向量做线性变换,y
必须是编码后字节数x的倍数,但最好小于维度dim和4*x;
* 如果总向量个数 N 小于 1百万,推荐使用  IVFx ,x 的选值介于 4*sqrt(N) 和 16*sqrt(N)
之间,训练数据的大小至少要是x的30倍;如果总向量个数 N 大于 1百万、小于 1千万,推荐使用 IMI2x10,实际内部聚类个数是 2 ^ (2 *10),将需要64 * 2 ^ 10 个向量参与训练;如果总向量个数 N 大于 1千万、小于 1亿,推荐使用 IMI2x12;如果总向量个数 N 大于1亿、小于 10亿,推荐使用 IMI2x14;IMI方法不支持GPU;* IndexIVF 天生支持 add_with_ids 方法,对于不支持 add_with_ids方法的类型,可以使用IndexIDMap 辅助* index = faiss.IndexFlatL2(xb.shape[1]) ids = np.arange(xb.shape[0])
index.add_with_ids(xb, ids) # this will crash, because IndexFlatL2 does not support add_with_ids index2 = faiss.IndexIDMap(index) index2.add_with_ids(xb, ids) # works, the vectors are stored in the underlying index
 

4,常见问题:

暴力搜索比较慢,解决方法:
export OMP_WAIT_POLICY=PASSIVE

这篇关于【faiss】使用的一点总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112372

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1