【faiss】使用的一点总结

2024-08-27 17:58
文章标签 总结 使用 一点 faiss

本文主要是介绍【faiss】使用的一点总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1,支持两种相似性计算方法:L2距离(即欧式距离)和点乘(归一化的向量点乘即cosine相似度);

2,按照是否编码压缩数据可以分为两类算法,使用压缩的算法可以在单台机器上处理十亿级别的向量规模;

3,并非线程安全的——不支持并行添加向量或搜索与添加的并行;仅在CPU模式下支持并行搜索;

4,只有继承了IndexIVF 的算法才支持向量的 remove() 操作,但由于是连续存储,remove的时间复杂度是O(n),建议另外维护一个列表记录被删除的或尚存的向量;

5,faiss 针对批量搜索做了优化;

6,IndexPQ, IndexIVFFlat, IndexIVFPQ, IndexIVFPQR 需要训练;

7,不支持重新训练,建议新建一个索引;

8,只接受 32-bit 浮点类型的输入数据;

9,使用 index = faiss.index_factory(dim, "PCA32,IVF100,PQ8")
这种形式创建索引更灵活,此处类型参数可解释为:使用PCA降维将原始向量降至32维,使用 IVF 建立索引,子list(即bucket 分桶)个数为100,使用 Product Quantizer (乘积量化) 将每个向量压缩编码成 8 字节;等价于

num_list = 64 dim = 64 bytes_per_vector = 8 bits_per_sub_vector = 8 quantizer= faiss.IndexFlatL2(dim) index = faiss.IndexIVFPQ(quantizer, dim, num_list, bytes_per_vector, bits_per_sub_vector)

10,索引类型的选择

* 如果需要精确的搜索结果,不要降维、不要量化,使用 Flat,同时,使用Flat 意味着数据不会被压缩,将占用同等大小的内存;
* 如果内存很紧张,可以使用 PCA 降维、PQ 量化编码,来减少内存占用,最终占用的内存大小约等于 <降维后的向量维度>
* <量化后的每个向量的字节数> * <向量个数>;
如果量化编码后的字节数大于64,推荐使用SQx 替换PQx,准确度相同但速度会更快;为了便于量化编码,可以使用 OPQx_y 先对向量做线性变换,y
必须是编码后字节数x的倍数,但最好小于维度dim和4*x;
* 如果总向量个数 N 小于 1百万,推荐使用  IVFx ,x 的选值介于 4*sqrt(N) 和 16*sqrt(N)
之间,训练数据的大小至少要是x的30倍;如果总向量个数 N 大于 1百万、小于 1千万,推荐使用 IMI2x10,实际内部聚类个数是 2 ^ (2 *10),将需要64 * 2 ^ 10 个向量参与训练;如果总向量个数 N 大于 1千万、小于 1亿,推荐使用 IMI2x12;如果总向量个数 N 大于1亿、小于 10亿,推荐使用 IMI2x14;IMI方法不支持GPU;* IndexIVF 天生支持 add_with_ids 方法,对于不支持 add_with_ids方法的类型,可以使用IndexIDMap 辅助* index = faiss.IndexFlatL2(xb.shape[1]) ids = np.arange(xb.shape[0])
index.add_with_ids(xb, ids) # this will crash, because IndexFlatL2 does not support add_with_ids index2 = faiss.IndexIDMap(index) index2.add_with_ids(xb, ids) # works, the vectors are stored in the underlying index
 

4,常见问题:

暴力搜索比较慢,解决方法:
export OMP_WAIT_POLICY=PASSIVE

这篇关于【faiss】使用的一点总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112372

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma