书生.浦江大模型实战训练营——(十四)MindSearch 快速部署

本文主要是介绍书生.浦江大模型实战训练营——(十四)MindSearch 快速部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在学习书生.浦江大模型实战训练营,所有课程都免费,以关卡的形式学习,也比较有意思,提供免费的算力实战,真的很不错(无广)!欢迎大家一起学习,打开LLM探索大门:邀请连接,PS,邀请有算力哈哈
在这里插入图片描述

文章目录

  • 一、创建开发机 & 环境配置
  • 二、获取硅基流动 API Key
  • 三、启动 MindSearch
  • 四、部署到 HuggingFace Space

一、创建开发机 & 环境配置

打开codespace主页,选择blank template。
在这里插入图片描述
新建一个目录用于存放 MindSearch 的相关代码,并把 MindSearch 仓库 clone 下来。在终端中运行下面的命令:

mkdir -p /workspaces/mindsearch
cd /workspaces/mindsearch
git clone https://github.com/InternLM/MindSearch.git
cd MindSearch && git checkout b832275 && cd ..

接下来,创建一个 conda 环境来安装相关依赖。

# 创建环境
conda create -n mindsearch python=3.10 -y
# 激活环境
conda activate mindsearch
# 安装依赖
pip install -r /workspaces/mindsearch/MindSearch/requirements.txt

二、获取硅基流动 API Key

首先,我们打开https://account.siliconflow.cn/login 来注册硅基流动的账号。在完成注册后,打开 https://cloud.siliconflow.cn/account/ak 来准备 API Key。首先创建新 API 密钥,然后点击密钥进行复制,以备后续使用。
在这里插入图片描述

三、启动 MindSearch

可以直接执行下面的代码来启动 MindSearch 的后端:

export SILICON_API_KEY=第二步中复制的密钥
conda activate mindsearch
cd /workspaces/mindsearch/MindSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine DuckDuckGoSearch

打开新终端运行如下命令来启动 MindSearch 的前端:

conda activate mindsearch
cd /workspaces/mindsearch/MindSearch
python frontend/mindsearch_gradio.py

可以看到github自动为这两个进程做端口转发。
在这里插入图片描述
在弹出的弹窗中打开窗口,即可体验。
在这里插入图片描述

四、部署到 HuggingFace Space

首先打开 https://huggingface.co/spaces ,并点击 Create new Space,如下图所示。

在这里插入图片描述

在输入 Space name 并选择 License 后,选择配置如下所示:
在这里插入图片描述

入 Settings,配置硅基流动的 API Key。如下图所示:
在这里插入图片描述
选择 New secrets,name 一栏输入 SILICON_API_KEY,value 一栏输入你的 API Key 的内容,点击save保存。
最后,新建一个目录,准备提交到 HuggingFace Space 的全部文件。

# 创建新目录
mkdir -p /workspaces/mindsearch/mindsearch_deploy
# 准备复制文件
cd /workspaces/mindsearch
cp -r /workspaces/mindsearch/MindSearch/mindsearch /workspaces/mindsearch/mindsearch_deploy
cp /workspaces/mindsearch/MindSearch/requirements.txt /workspaces/mindsearch/mindsearch_deploy
# 创建 app.py 作为程序入口
touch /workspaces/mindsearch/mindsearch_deploy/app.py

app.py 的内容如下:

import json
import osimport gradio as gr
import requests
from lagent.schema import AgentStatusCodeos.system("python -m mindsearch.app --lang cn --model_format internlm_silicon &")PLANNER_HISTORY = []
SEARCHER_HISTORY = []def rst_mem(history_planner: list, history_searcher: list):'''Reset the chatbot memory.'''history_planner = []history_searcher = []if PLANNER_HISTORY:PLANNER_HISTORY.clear()return history_planner, history_searcherdef format_response(gr_history, agent_return):if agent_return['state'] in [AgentStatusCode.STREAM_ING, AgentStatusCode.ANSWER_ING]:gr_history[-1][1] = agent_return['response']elif agent_return['state'] == AgentStatusCode.PLUGIN_START:thought = gr_history[-1][1].split('```')[0]if agent_return['response'].startswith('```'):gr_history[-1][1] = thought + '\n' + agent_return['response']elif agent_return['state'] == AgentStatusCode.PLUGIN_END:thought = gr_history[-1][1].split('```')[0]if isinstance(agent_return['response'], dict):gr_history[-1][1] = thought + '\n' + f'```json\n{json.dumps(agent_return["response"], ensure_ascii=False, indent=4)}\n```'  # noqa: E501elif agent_return['state'] == AgentStatusCode.PLUGIN_RETURN:assert agent_return['inner_steps'][-1]['role'] == 'environment'item = agent_return['inner_steps'][-1]gr_history.append([None,f"```json\n{json.dumps(item['content'], ensure_ascii=False, indent=4)}\n```"])gr_history.append([None, ''])returndef predict(history_planner, history_searcher):def streaming(raw_response):for chunk in raw_response.iter_lines(chunk_size=8192,decode_unicode=False,delimiter=b'\n'):if chunk:decoded = chunk.decode('utf-8')if decoded == '\r':continueif decoded[:6] == 'data: ':decoded = decoded[6:]elif decoded.startswith(': ping - '):continueresponse = json.loads(decoded)yield (response['response'], response['current_node'])global PLANNER_HISTORYPLANNER_HISTORY.append(dict(role='user', content=history_planner[-1][0]))new_search_turn = Trueurl = 'http://localhost:8002/solve'headers = {'Content-Type': 'application/json'}data = {'inputs': PLANNER_HISTORY}raw_response = requests.post(url,headers=headers,data=json.dumps(data),timeout=20,stream=True)for resp in streaming(raw_response):agent_return, node_name = respif node_name:if node_name in ['root', 'response']:continueagent_return = agent_return['nodes'][node_name]['detail']if new_search_turn:history_searcher.append([agent_return['content'], ''])new_search_turn = Falseformat_response(history_searcher, agent_return)if agent_return['state'] == AgentStatusCode.END:new_search_turn = Trueyield history_planner, history_searcherelse:new_search_turn = Trueformat_response(history_planner, agent_return)if agent_return['state'] == AgentStatusCode.END:PLANNER_HISTORY = agent_return['inner_steps']yield history_planner, history_searcherreturn history_planner, history_searcherwith gr.Blocks() as demo:gr.HTML("""<h1 align="center">MindSearch Gradio Demo</h1>""")gr.HTML("""<p style="text-align: center; font-family: Arial, sans-serif;">MindSearch is an open-source AI Search Engine Framework with Perplexity.ai Pro performance. You can deploy your own Perplexity.ai-style search engine using either closed-source LLMs (GPT, Claude) or open-source LLMs (InternLM2.5-7b-chat).</p>""")gr.HTML("""<div style="text-align: center; font-size: 16px;"><a href="https://github.com/InternLM/MindSearch" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">🔗 GitHub</a><a href="https://arxiv.org/abs/2407.20183" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">📄 Arxiv</a><a href="https://huggingface.co/papers/2407.20183" style="margin-right: 15px; text-decoration: none; color: #4A90E2;">📚 Hugging Face Papers</a><a href="https://huggingface.co/spaces/internlm/MindSearch" style="text-decoration: none; color: #4A90E2;">🤗 Hugging Face Demo</a></div>""")with gr.Row():with gr.Column(scale=10):with gr.Row():with gr.Column():planner = gr.Chatbot(label='planner',height=700,show_label=True,show_copy_button=True,bubble_full_width=False,render_markdown=True)with gr.Column():searcher = gr.Chatbot(label='searcher',height=700,show_label=True,show_copy_button=True,bubble_full_width=False,render_markdown=True)with gr.Row():user_input = gr.Textbox(show_label=False,placeholder='帮我搜索一下 InternLM 开源体系',lines=5,container=False)with gr.Row():with gr.Column(scale=2):submitBtn = gr.Button('Submit')with gr.Column(scale=1, min_width=20):emptyBtn = gr.Button('Clear History')def user(query, history):return '', history + [[query, '']]submitBtn.click(user, [user_input, planner], [user_input, planner],queue=False).then(predict, [planner, searcher],[planner, searcher])emptyBtn.click(rst_mem, [planner, searcher], [planner, searcher],queue=False)demo.queue()
demo.launch(server_name='0.0.0.0',server_port=7860,inbrowser=True,share=True)

最后,将 /root/mindsearch/mindsearch_deploy 目录下的文件(使用 git)提交到 HuggingFace Space 即可完成部署了。将代码提交到huggingface space的流程如下:首先创建一个有写权限的token。
在这里插入图片描述
然后从huggingface把空的代码仓库clone到codespace。

cd /workspaces/codespaces-blank
git clone https://huggingface.co/spaces/<你的名字>/<仓库名称>
# 把token挂到仓库上,让自己有写权限
git remote set-url space https://<你的名字>:<上面创建的token>@huggingface.co/spaces/<你的名字>/<仓库名称>

在这里插入图片描述
现在codespace就是本地仓库,huggingface space是远程仓库,接下来使用方法就和常规的git一样了。

cd <仓库名称>
# 把刚才准备的文件都copy进来
cp /workspaces/mindsearch/mindsearch_deploy/* .

这是最终目录:
在这里插入图片描述
最后把代码提交到huggingface space会自动启动项目:

git add .
git commit -m "update"
git push

支持在线访问:MindSearch Gradio Demo,下面进行测试:
在这里插入图片描述
至此,MindSearch 快速部署完成!

这篇关于书生.浦江大模型实战训练营——(十四)MindSearch 快速部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112199

相关文章

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

Spring Boot基于 JWT 优化 Spring Security 无状态登录实战指南

《SpringBoot基于JWT优化SpringSecurity无状态登录实战指南》本文介绍如何使用JWT优化SpringSecurity实现无状态登录,提高接口安全性,并通过实际操作步骤... 目录Spring Boot 实战:基于 JWT 优化 Spring Security 无状态登录一、先搞懂:为什