浅谈【数据结构】图-最短路径问题

2024-08-27 15:04

本文主要是介绍浅谈【数据结构】图-最短路径问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1、最短路径问题

2、迪杰斯特拉算法

3、算法的步骤


谢谢帅气美丽且优秀的你看完我的文章还要点赞、收藏加关注

没错,说的就是你,不用再怀疑!!!

希望我的文章内容能对你有帮助,一起努力吧!!!


1、最短路径问题

最短路径问题:是指在图中找到两个顶点,求两个顶点之间最短路径的一个问题。

“最短”:通常来说是指路径上面总权值最小,权值(边/弧的长度、成本、时间...)。

最短路径问题计算机科学、运筹学、网络理论等多个领域都有广泛的应用。

在图中,路径是指:一个顶点到另一个顶点的方式。一个顶点到另一个顶点方式并不一定是唯一的,在 多个路径中找一个总权值最小的一个路径。

解决带权的有向图两个顶点之间最短路径问题

两个经典算法:

  • 迪杰斯特拉算法(Dijkstra)
  • 弗洛伊德算法(Floyd)

2、迪杰斯特拉算法

Dijkstra算法:是解决从网络中任意一个顶点(源点)出发,求它到其他顶点(终点)的最短路径的问题。

算法思路:按路径长度递增次序产生从某个源点v到图中其余各项顶点的最短路径

Dijkstra算法依赖两个辅助向量:

  • 向量S[n]
    • S[i]==1 (true),说明从源点v到终点vi的最短路径已经找到了。
    • S[i]==0 (false) , 说明从源点v到终点vi的最短路径还没有找到。
    • 初始化开始S[v]==1 (true) , 其余各项顶点均为0 (false)。
  • 向量dist[n]
    • dist[n]存放从源点v到终点vi这个顶点当前的最短路径
    • 初始化
      • 当v可以直接到到vi的时候,那么dist[vi] = 的权值w
      • 当v不可以直接到到vi的时候,那么dist[vi] = 无穷大

3、算法的步骤

很显然从源点v到其它各项顶点的最短路径中的第一短的路径,绝对是能直接到到达的顶点(邻接点)中 最短的一条路径

  • 第一步:
    • 从源点v到其它各项顶点的当前最短路径找出最短的来。
      • dist[u] = min{dist[w] (w=0,1,2,3,4,5....n-1),并且S[w]==0 (false))}
        • 最优路径=当前已知的最短路径中最短的一条
      • dist[u] 称为当前最优路径,u为当前最优的顶点下标
  • 第二步:
    • 用当前最优路径来更新其他的路径
      • 对S[w] == 0 的w(没有找到最优路径的顶点)进行更新。
      • 如果dist[u]+ 小于 dist[w] , 那么就更新dist[w]
  • 第三步:
    • 重复第一步和第二步

***迪杰斯特拉算法代码示例***

#include <iostream>// 顶点数量是10个
#define VertexMaxCount 10// 无穷大
#define MAXNUMBER (65535)// 图类型
typedef struct 
{// 关系集int R[VertexMaxCount][VertexMaxCount];// 顶点集std::string V[VertexMaxCount];// 顶点数量int vertex_count;
}Graph;// 关系类型
typedef  struct 
{int index_s; // 关系开始顶点下标int index_e; // 关系结束顶点下标int r;  // 关系
}R;/*@brief 为一个邻接矩阵图增加一个顶点@param graph  需要增加顶点的图指针@param vertex 需要增加的顶点
*/
void addVertex(Graph *graph,std::string vertex)
{// 判断图是否存在if(!graph)return;// 添加新顶点graph->V[graph->vertex_count] = vertex;// 更新顶点数量graph->vertex_count++;
}int getIndex(Graph*graph,std::string vertex)
{if(!graph)return -1;for(int index=0;index < VertexMaxCount;index++)if(graph->V[index] == vertex)return index; // 返回顶点在图中的下标return -1; // 表示顶点不在图中
}/*@brief 为一个邻接矩阵图增加关系@param graph 需要增加关系的图指针@param r 增加新关系
*/
void addR(Graph *graph,R r)
{// 判断图是否存在if(!graph)return;// 添加关系graph->R[r.index_s][r.index_e] = r.r;
}Graph *creatGraph()
{// 申请了一个邻接矩阵的空间Graph * graph = new Graph;std::cout << "请依次输入顶点:";// 增加顶点while(1){std::string vertex = "结束";std::cin >> vertex;if(vertex == "结束")break; // 增加进入图addVertex(graph,vertex);}// 先初始化关系for(int row = 0;row < VertexMaxCount;row++){for(int column = 0;column < VertexMaxCount;column++)if(row == column)graph->R[row][column] = 0;elsegraph->R[row][column] = MAXNUMBER;}std::cout << "请输入顶点之间的关系:" << std::endl;// 增加关系while(1){std::string start_vertex = "结束";std::string end_vertex = "结束";int ralation = MAXNUMBER;std::cin >> start_vertex;std::cin >> end_vertex;std::cin >> ralation;if(start_vertex == "结束"||end_vertex == "结束"||ralation == MAXNUMBER)break;R r;r.index_s = getIndex(graph,start_vertex);r.index_e = getIndex(graph,end_vertex);r.r = ralation;// 判断结点下班是否有效if(r.index_s == -1||r.index_e == -1)continue;// 存入关系addR(graph,r);}return graph;
}/*@brief 打印一个邻接矩阵图@param graph 需要打印的邻接矩阵图指针
*/
void printGraph(Graph *graph)
{if(!graph)return ;std::cout << "\t";// 打印顶点for(int count=0;count < VertexMaxCount;count++)std::cout << graph->V[count] << "\t";std::cout << std::endl;// 打印关系for(int row = 0;row < graph->vertex_count;row++){std::cout << graph->V[row] << "\t";for(int column = 0;column < VertexMaxCount;column++){// 存在关系std::cout << graph->R[row][column] << "\t";}std::cout << std::endl;}
}/*逻辑思路:算法的步骤很显然从源点v到其它各项顶点的最短路径中的第一短的路径,绝对是能直接到到达的顶点(邻接点)中最短的一条路径- 第一步:- 从源点v到其它各项顶点的当前最短路径找出最短的来。- dist[u] = min{dist[w] (w=0,1,2,3,4,5....n-1),并且S[w]==0 (false))}- 最优路径=当前已知的最短路径中最短的一条- dist[u] 称为**当前最优路径**,u为当前最优的顶点下标- 第二步:- 用当前最优路径来更新其他的路径- 对S[w] == 0 的w(没有找到最优路径的顶点)进行更新。- 如果dist[u]+<u,w> 小于 dist[w] , 那么就更新dist[w]- 第三步:- 重复第一步和第二步@brief 通过迪杰斯特拉算法求最短路径@param graph 需要进行最短路径查找的图@param v_src 源点
*/// 两个辅助向量
static bool  S[VertexMaxCount];
static int dist[VertexMaxCount];void Dijkstra(Graph *graph,std::string v_src)
{
//------------------------迪杰斯特拉准备工作---------------------------// 初始化向量Sfor(int count = 0;count < graph->vertex_count;count++)S[count] = false; // 把所有顶点初始化的时候置为没有找到最短路径// 将v_src 到 v_src设置为找到了最短路径:自己到自己的最优路径找到了int v_src_pos = getIndex(graph,v_src);S[v_src_pos] = true;// 初始化dist向量for(int count = 0;count < graph->vertex_count;count++)dist[count] = graph->R[v_src_pos][count]; // 权值存储到dist里面// 结束之后:dist存储了源点到其他顶点的路径权值//------------------------正式开始迪杰斯特拉---------------------------int min_pos; // 用来存储当前最短路径的下标int min_w;   // 用来存储当前最短路径的权值for(int count = 0;count < graph->vertex_count-1;count++){// 初始化当前最短路径的下标和权值min_pos = 0;min_w = MAXNUMBER;// 第一步:从源点v到其他各项顶点的当前最短路径中找出最短的路径for(int min_road_pos = 0;min_road_pos < graph->vertex_count;min_road_pos++){// 最优路径=当前已知的最短路径中最短的一条if(S[min_road_pos]==false&&dist[min_road_pos] < min_w){min_pos = min_road_pos; // 保存小的那个下标min_w   = dist[min_road_pos]; // 保存它的权值}}// 当循环结束,你就能拿到当前最短路径中的第一短std::cout << "当前最短路径为:" << graph->V[v_src_pos] << "->" << graph->V[min_pos] << ":" << min_w << std::endl;// 这一条路径是源点到min_pos顶点的最优路径了,标记它S[min_pos] = true;// 第二步:通过这个最短路径来更新其他顶点路径for(int pos = 0;pos < graph->vertex_count;pos++){//  如果dist[min_pos]+<min_pos,pos> 小于 dist[pos] , 那么就更新dist[pos]if(S[pos] == false&&dist[min_pos]+graph->R[min_pos][pos] < dist[pos]){// 更新pos对应的顶点的路径dist[pos] = dist[min_pos] + graph->R[min_pos][pos];}}}// 整个循环结束之后,从v_src到其他各项顶点的最短路径就求出来了for(int count = 0; count < graph->vertex_count;count ++){std::cout << graph->V[v_src_pos] << "->" << graph->V[count] << ":" << dist[count] << std::endl;}
}int main()
{Graph *g = creatGraph();printGraph(g);Dijkstra(g,"a");delete g;return 0;
}

这篇关于浅谈【数据结构】图-最短路径问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112007

相关文章

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

浅谈mysql的sql_mode可能会限制你的查询

《浅谈mysql的sql_mode可能会限制你的查询》本文主要介绍了浅谈mysql的sql_mode可能会限制你的查询,这个问题主要说明的是,我们写的sql查询语句违背了聚合函数groupby的规则... 目录场景:问题描述原因分析:解决方案:第一种:修改后,只有当前生效,若是mysql服务重启,就会失效;

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓