tf.identity 和 tf.control_dependencies的用法

2024-08-27 09:18

本文主要是介绍tf.identity 和 tf.control_dependencies的用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于 tf.control_dependencies(具体参考博客,也是本文主要参考对象):
tf.control_dependencies(control_inputs)设计是用来控制计算流图的,给图中的某些计算指定顺序。比如:我们想要获取参数更新后的值,那么我们可以这么组织我们的代码。

opt = tf.train.Optimizer().minize(loss)with tf.control_dependencies([opt]): # 即执行过括号中的操作再执行下面的操作updated_weight = tf.identity(weight)with tf.Session() as sess:tf.global_variables_initializer().run()sess.run(updated_weight, feed_dict={...}) # 这样每次得到的都是更新后的weight

总结一句话就是,在执行某些op,tensor之前,某些op,tensor得首先被运行。


关于tf.identity的用法:

tf.identity(input,name=None)
#Return a tensor with the same shape and contents as input.
#返回一个tensor,contents和shape都和input的一样。

简单地说就是返回了一个一模一样新的tensor,再control_dependencies的作用块下,需要增加一个新节点到gragh中。(别人的总结:为cpu gpu传输什么的提供更好的性能。就像你做一个电路板,有些地方要把线路引出来,调试的时候可以看中间结果一样,tf.identity就是为了在图上显示这个值而创建的虚拟节点。)
在Stack Overflow中有一个问题对tf.identity进行了举例,具体如下:

x = tf.Variable(0.0)
x_plus_1 = tf.assign_add(x, 1) # 对x进行加1,x_plus_l是个opwith tf.control_dependencies([x_plus_1]):y = x
init = tf.global_variables_initializer()with tf.Session() as session:init.run() # 相当于session.run(init)for i in xrange(5):print(y.eval()) # y.eval()这个相当于session.run(y)

上面的代码返回结果为:

0.0
0.0
0.0
0.0
0.0

因为这样相当于x_plus_1 这个op没有被运行,因为一般我们在session中会这么执行:

with tf.Session() as session:init.run()for i in range(5):session.run(x_plus_1) #添加了这行代码print(y.eval())

返回的结果即是我们想要得到的效果:

1.0
2.0
3.0
4.0
5.0

但是通过tf.identity也可以得到相同的结果:

x = tf.Variable(0.0)
x_plus_1 = tf.assign_add(x, 1)with tf.control_dependencies([x_plus_1]):y = tf.identity(x)
init = tf.initialize_all_variables()with tf.Session() as session:init.run()for i in xrange(5):print(y.eval())

下面说明两种 control_dependencies 不 work 的情况

下面有两种情况,control_dependencies不work,其实并不是它真的不work,而是我们的使用方法有问题。

第一种情况:

import tensorflow as tf
w = tf.Variable(1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)ema_op = ema.apply([update])
with tf.control_dependencies([ema_op]):ema_val = ema.average(update)with tf.Session() as sess:tf.global_variables_initializer().run()for i in range(3):print(sess.run([ema_val]))

也许你会觉得,在我们 sess.run([ema_val]), ema_op 都会被先执行,然后再计算ema_val,实际情况并不是这样,为什么?
有兴趣的可以看一下源码,就会发现 ema.average(update) 不是一个 op,它只是从ema对象的一个字典中取出键对应的 tensor 而已,然后赋值给ema_val。这个 tensor是由一个在 tf.control_dependencies([ema_op]) 外部的一个 op 计算得来的,所以 control_dependencies会失效。解决方法也很简单,看代码:

import tensorflow as tf
w = tf.Variable(1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)ema_op = ema.apply([update])
with tf.control_dependencies([ema_op]):ema_val = tf.identity(ema.average(update)) #一个identity搞定with tf.Session() as sess:tf.global_variables_initializer().run()for i in range(3):print(sess.run([ema_val]))

第二种情况:这个情况一般不会碰到

import tensorflow as tf
w = tf.Variable(1.0)
ema = tf.train.ExponentialMovingAverage(0.9)
update = tf.assign_add(w, 1.0)ema_op = ema.apply([update])
with tf.control_dependencies([ema_op]):w1 = tf.Variable(2.0)ema_val = ema.average(update)with tf.Session() as sess:tf.global_variables_initializer().run()for i in range(3):print(sess.run([ema_val, w1]))

这种情况下,control_dependencies也不 work。读取 w1 的值并不会触发 ema_op, 原因请看代码:

#这段代码出现在Variable类定义文件中第287行,
# 在创建Varible时,tensorflow是移除了dependencies了的
#所以会出现 control 不住的情况
with ops.control_dependencies(None):...      

这篇关于tf.identity 和 tf.control_dependencies的用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111257

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

MyBatis-Flex BaseMapper的接口基本用法小结

《MyBatis-FlexBaseMapper的接口基本用法小结》本文主要介绍了MyBatis-FlexBaseMapper的接口基本用法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具... 目录MyBATis-Flex简单介绍特性基础方法INSERT① insert② insertSelec

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

oracle中exists和not exists用法举例详解

《oracle中exists和notexists用法举例详解》:本文主要介绍oracle中exists和notexists用法的相关资料,EXISTS用于检测子查询是否返回任何行,而NOTE... 目录基本概念:举例语法pub_name总结 exists (sql 返回结果集为真)not exists (s

Springboot中Jackson用法详解

《Springboot中Jackson用法详解》Springboot自带默认json解析Jackson,可以在不引入其他json解析包情况下,解析json字段,下面我们就来聊聊Springboot中J... 目录前言Jackson用法将对象解析为json字符串将json解析为对象将json文件转换为json

bytes.split的用法和注意事项

当然,我很乐意详细介绍 bytes.Split 的用法和注意事项。这个函数是 Go 标准库中 bytes 包的一个重要组成部分,用于分割字节切片。 基本用法 bytes.Split 的函数签名如下: func Split(s, sep []byte) [][]byte s 是要分割的字节切片sep 是用作分隔符的字节切片返回值是一个二维字节切片,包含分割后的结果 基本使用示例: pa

UVM:callback机制的意义和用法

1. 作用         Callback机制在UVM验证平台,最大用处就是为了提高验证平台的可重用性。在不创建复杂的OOP层次结构前提下,针对组件中的某些行为,在其之前后之后,内置一些函数,增加或者修改UVM组件的操作,增加新的功能,从而实现一个环境多个用例。此外还可以通过Callback机制构建异常的测试用例。 2. 使用步骤         (1)在UVM组件中内嵌callback函

这些ES6用法你都会吗?

一 关于取值 取值在程序中非常常见,比如从对象obj中取值 const obj = {a:1b:2c:3d:4} 吐槽: const a = obj.a;const b = obj.b;const c = obj.c;//或者const f = obj.a + obj.b;const g = obj.c + obj.d; 改进:用ES6解构赋值