pytorch 参数冻结 parameter-efficient fine-tuning

2024-08-27 08:12

本文主要是介绍pytorch 参数冻结 parameter-efficient fine-tuning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标:在网络中冻结部分参数进行高效训练

框架:pytorch (version 1.11.0)

基本实现

  1. 需要学习的参数requires_grad设置为True,冻结的设置为False
  2. 需要学习的参数要加到 optimizer的List中;对于冻结的参数,可以直接不加进去,(应该也可以加进去,但是requires_grad=False)

注意事项
3. 如果不传递参数的层,记得前向操作是要设置 with torch.no_grad,否则即便没有需要更新的参数,其layer的梯度也回传,效率低。

  1. 要保证所有参与前向的操作,都被用于计算loss。例如,a=self.layer(b),只要前向里出现了这个操作,就要保证a(或a的后续输出)要参与loss的计算。如果a算完了不用,是不可以的。(不论self.layer里是否有需要更新的参数)。ps:这点和不冻结设置下的要求不一样,如果所有参数都学,即便中间有一些变量操作是冗余的,也不会报错,只是增加计算代价而已。(比如,在clip框架里,如果不用text prompt, 就不要提取该特征)
  2. 要保证,所有需要更新的参数,都用于前向计算了。如何比较二者的参数,见下:

a. 记录需要梯度回传的参数:

grad_params = set()
for name, param in model.named_parameters():if param.requires_grad:grad_params.add(name)

b. 记录前向中使用的参数:

used_params = set()
def forward(self, x):for name, param in self.named_parameters():if param.requires_grad:param.register_hook(lambda grad, name=name: used_params.add(name))return self.model(x)

c. 比较二者差异

unused_params = grad_params - used_params
if unused_params:print("以下参数未在 forward 函数中使用:", unused_params)
else:print("所有需要计算梯度的参数都在 forward 函数中使用了。")

ps. 好像也可以通过在nn.parallel.DistributedDataParallel中设置find_unused_parameters=True来找到未使用的变量。(不过我没试过

这篇关于pytorch 参数冻结 parameter-efficient fine-tuning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111115

相关文章

Java JAR 启动内存参数配置指南(从基础设置到性能优化)

《JavaJAR启动内存参数配置指南(从基础设置到性能优化)》在启动Java可执行JAR文件时,合理配置JVM内存参数是保障应用稳定性和性能的关键,本文将系统讲解如何通过命令行参数、环境变量等方式... 目录一、核心内存参数详解1.1 堆内存配置1.2 元空间配置(MetASPace)1.3 线程栈配置1.

SpringMVC配置、映射与参数处理​入门案例详解

《SpringMVC配置、映射与参数处理​入门案例详解》文章介绍了SpringMVC框架的基本概念和使用方法,包括如何配置和编写Controller、设置请求映射规则、使用RestFul风格、获取请求... 目录1.SpringMVC概述2.入门案例①导入相关依赖②配置web.XML③配置SpringMVC

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用