机器视觉中的图像积分图及其实现

2024-08-27 00:32

本文主要是介绍机器视觉中的图像积分图及其实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/baimafujinji/article/details/50466224

 

计算机视觉中,人脸检测(Face Detection)是一项常见的任务。Paul Viola和Michael Jones在《Rapid object detection using a Boosted cascade ofsimple features》一文中提出的快速对象识别算法将人脸检测推向了一个新的高度,这种将Adaboost 和Cascade 算法综合运用的实时人脸检测系统,使人脸检测这项工作具有了更为实际的意义和价值。其中,为了加速Haar特征的计算,他们提出了积分图的概念。

坐标点(x, y)的积分图定义为其所对应的图中左上角的像素值之和:

其中ii(x,y)表示像素点(x, y)的积分图,i(x, y)表示原始图像。例如,在Matlab中最简单的计算积分图的方法就是使用累和函数cumsum。下面给出一段简单的示例代码。

>> m = [1, 2, 3;
        4, 5, 6;
        7, 8, 9]

m =

     1     2     3
     4     5     6
     7     8     9

>> cumsum(cumsum(m, 2), 1)

ans =

     1     3     6
     5    12    21
    12    27    45

但是你可以想象,如果按照定义来计算图像的积分图,随着图像尺寸的扩大,计算量的增长是非常惊人的。幸好,我们可以使用一种更加高效的方法来计算积分图。ii(x,y)通过下式迭代进行计算:s(x, y) = s(x, y−1)+i(x,y),ii(x, y) = ii(x-1, y)+s(x,y),其中s(x,y)表示行的积分和,且s(x, -1) =0,ii(-1, y) = 0。求一幅图像的积分和,只需遍历一次图像即可。

积分图元素值计算:由上述公式可知,上图中点“1”的积分图的值是矩形框A中所有像素的像素值之和。点“2”的积分图所对应的值为A+B,点“3”是A+C,点“4”是A+B+C+D,所以D中所有的像素值之和可以用4+1-(2+3)计算。这也是利用积分图来实现Haar特征快速计算的基本原理。假设点4处的坐标为(x,y),那么可以知道点4处积分图ii(x,y)的计算公式为 ii(x, y) = i(x, y) + ii(x-1, y) + ii(x, y-1) - ii(x-1, y-1), 这个公式对应图中的 D + (A+C) + (A+B) - A = A + B + C + D。

下面所示之Matlab代码就是利用上述原理来计算积分图的。

>> [w h] = size(m);
>> %计算积分图
I=zeros(w,h);
for i=1:w
    for j=1:h
        if i==1 && j==1             %积分图像左上角
            I(i,j)=m(i,j);
        elseif i==1 && j~=1         %积分图像第一行
            I(i,j)=I(i,j-1)+m(i,j);
        elseif i~=1 && j==1         %积分图像第一列
            I(i,j)=I(i-1,j)+m(i,j);
        else                        %积分图像其它像素
            I(i,j)=m(i,j)+I(i-1,j)+I(i,j-1)-I(i-1,j-1);  
        end
    end
end
>> I

I =

     1     3     6
     5    12    21
    12    27    45

可见这同前面根据定义算得的结果是一致的。
--------------------- 
作者:白马负金羁 
来源:CSDN 
原文:https://blog.csdn.net/baimafujinji/article/details/50466224 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于机器视觉中的图像积分图及其实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110118

相关文章

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很