机器视觉中的图像积分图及其实现

2024-08-27 00:32

本文主要是介绍机器视觉中的图像积分图及其实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/baimafujinji/article/details/50466224

 

计算机视觉中,人脸检测(Face Detection)是一项常见的任务。Paul Viola和Michael Jones在《Rapid object detection using a Boosted cascade ofsimple features》一文中提出的快速对象识别算法将人脸检测推向了一个新的高度,这种将Adaboost 和Cascade 算法综合运用的实时人脸检测系统,使人脸检测这项工作具有了更为实际的意义和价值。其中,为了加速Haar特征的计算,他们提出了积分图的概念。

坐标点(x, y)的积分图定义为其所对应的图中左上角的像素值之和:

其中ii(x,y)表示像素点(x, y)的积分图,i(x, y)表示原始图像。例如,在Matlab中最简单的计算积分图的方法就是使用累和函数cumsum。下面给出一段简单的示例代码。

>> m = [1, 2, 3;
        4, 5, 6;
        7, 8, 9]

m =

     1     2     3
     4     5     6
     7     8     9

>> cumsum(cumsum(m, 2), 1)

ans =

     1     3     6
     5    12    21
    12    27    45

但是你可以想象,如果按照定义来计算图像的积分图,随着图像尺寸的扩大,计算量的增长是非常惊人的。幸好,我们可以使用一种更加高效的方法来计算积分图。ii(x,y)通过下式迭代进行计算:s(x, y) = s(x, y−1)+i(x,y),ii(x, y) = ii(x-1, y)+s(x,y),其中s(x,y)表示行的积分和,且s(x, -1) =0,ii(-1, y) = 0。求一幅图像的积分和,只需遍历一次图像即可。

积分图元素值计算:由上述公式可知,上图中点“1”的积分图的值是矩形框A中所有像素的像素值之和。点“2”的积分图所对应的值为A+B,点“3”是A+C,点“4”是A+B+C+D,所以D中所有的像素值之和可以用4+1-(2+3)计算。这也是利用积分图来实现Haar特征快速计算的基本原理。假设点4处的坐标为(x,y),那么可以知道点4处积分图ii(x,y)的计算公式为 ii(x, y) = i(x, y) + ii(x-1, y) + ii(x, y-1) - ii(x-1, y-1), 这个公式对应图中的 D + (A+C) + (A+B) - A = A + B + C + D。

下面所示之Matlab代码就是利用上述原理来计算积分图的。

>> [w h] = size(m);
>> %计算积分图
I=zeros(w,h);
for i=1:w
    for j=1:h
        if i==1 && j==1             %积分图像左上角
            I(i,j)=m(i,j);
        elseif i==1 && j~=1         %积分图像第一行
            I(i,j)=I(i,j-1)+m(i,j);
        elseif i~=1 && j==1         %积分图像第一列
            I(i,j)=I(i-1,j)+m(i,j);
        else                        %积分图像其它像素
            I(i,j)=m(i,j)+I(i-1,j)+I(i,j-1)-I(i-1,j-1);  
        end
    end
end
>> I

I =

     1     3     6
     5    12    21
    12    27    45

可见这同前面根据定义算得的结果是一致的。
--------------------- 
作者:白马负金羁 
来源:CSDN 
原文:https://blog.csdn.net/baimafujinji/article/details/50466224 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于机器视觉中的图像积分图及其实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110118

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组