前端算法 === 力扣 111 二叉树的最小深度

2024-08-26 18:12

本文主要是介绍前端算法 === 力扣 111 二叉树的最小深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

问题描述

DFS(深度优先搜索)方案

BFS(广度优先搜索)方案

总结


力扣(LeetCode)上的题目111是关于二叉树的最小深度问题。这个问题可以通过深度优先搜索(DFS)和广度优先搜索(BFS)两种方法来解决。下面我将分别对这两种方法进行讲解。

 

 

问题描述

给定一个二叉树,找出它的最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

本题还有一个误区,题目中说的是:最小深度是从根节点到最近叶子节点的最短路径上的节点数量。,注意是叶子节点。

什么是叶子节点,左右都为空的节点才是叶子节点!

111.二叉树的最小深度

DFS(深度优先搜索)方案

DFS是一种自顶向下的搜索策略,它从根节点开始,尽可能深地搜索树的分支。在这个问题中,我们可以递归地遍历二叉树的每个节点,直到到达叶子节点。

  1. 基本情况:如果当前节点为空,返回0。
  2. 递归:分别对当前节点的左子树和右子树调用DFS,获取它们的最小深度。
  3. 比较:比较左子树和右子树的深度,取较小者加1(当前节点的深度)。
function minDepth(root) {// 基本情况:如果根节点为空,返回0,因为空树的深度是0if (root === null) {return 0;}// 如果左子树为空,只考虑右子树的深度if (root.left === null) {return minDepth(root.right) + 1; // 递归调用右子树,并将深度加1}// 如果右子树为空,只考虑左子树的深度if (root.right === null) {return minDepth(root.left) + 1; // 递归调用左子树,并将深度加1}// 如果左右子树都不为空,比较左右子树的深度,选择较小的深度,然后加1return Math.min(minDepth(root.left), minDepth(root.right)) + 1;
}
  • root:当前正在考虑的节点。
  • root.left 和 root.right:当前节点的左子节点和右子节点。
  • minDepth(root.left) 和 minDepth(root.right):递归调用函数本身,分别计算左子树和右子树的最小深度。
  • Math.min(...):选择两个深度中的较小值。
  • +1:因为我们在计算从根节点到叶子节点的路径长度,所以每经过一个节点,深度就加1。

递归的美妙之处在于它能够自然地处理树结构,每次递归调用都处理树的一个分支,直到达到叶子节点,然后逐层返回,直到得到整个树的最小深度。这种方法直观且易于理解,特别是对于树结构的问题。

BFS(广度优先搜索)方案

BFS是一种自底向上的搜索策略,它从根节点开始,逐层遍历树的所有节点。在这个问题中,我们可以使用队列来实现BFS。

  1. 初始化:创建一个队列,将根节点入队。
  2. 循环:只要队列不为空,执行以下操作:
    • 取出队列中的所有节点,记为当前层。
    • 对于当前层的每个节点,检查其左右子节点:
      • 如果一个节点没有左子节点或右子节点,返回当前层的深度。
      • 如果有子节点,将子节点加入队列。
  3. 层级计数:每处理完一层,深度计数器加1。
function minDepth(root) {if (!root) return 0;const queue = [[root, 1]];let depth = 1;while (queue.length) {const [node, d] = queue.shift();if (!node.left && !node.right) return d;if (node.left) queue.push([node.left, depth + 1]);if (node.right) queue.push([node.right, depth + 1]);}
}

总结

DFS和BFS都是解决这个问题的有效方法。DFS的优点是代码简单,但可能在某些情况下效率不如BFS。BFS通常更直观,因为它逐层遍历树,而且对于这个问题,BFS可以更快地找到最小深度,因为它会在找到第一个叶子节点时立即停止搜索。然而,BFS需要额外的存储空间来存储队列。根据具体问题和场景,你可以选择适合的方法。

这篇关于前端算法 === 力扣 111 二叉树的最小深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109300

相关文章

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

CSS弹性布局常用设置方式

《CSS弹性布局常用设置方式》文章总结了CSS布局与样式的常用属性和技巧,包括视口单位、弹性盒子布局、浮动元素、背景和边框样式、文本和阴影效果、溢出隐藏、定位以及背景渐变等,通过这些技巧,可以实现复杂... 一、单位元素vm 1vm 为视口的1%vh 视口高的1%vmin 参照长边vmax 参照长边re

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

css渐变色背景|<gradient示例详解

《css渐变色背景|<gradient示例详解》CSS渐变是一种从一种颜色平滑过渡到另一种颜色的效果,可以作为元素的背景,它包括线性渐变、径向渐变和锥形渐变,本文介绍css渐变色背景|<gradien... 使用渐变色作为背景可以直接将渐China编程变色用作元素的背景,可以看做是一种特殊的背景图片。(是作为背

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...

css实现图片旋转功能

《css实现图片旋转功能》:本文主要介绍了四种CSS变换效果:图片旋转90度、水平翻转、垂直翻转,并附带了相应的代码示例,详细内容请阅读本文,希望能对你有所帮助... 一 css实现图片旋转90度.icon{ -moz-transform:rotate(-90deg); -webkit-transfo

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要