Hadoop的HA配置与实现(ZooKeeper)

2024-08-26 17:52

本文主要是介绍Hadoop的HA配置与实现(ZooKeeper),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、Hadoop的HA架构
  • 二、配置实现Hadoop的HA
  • 三、效果

一、Hadoop的HA架构

在这里插入图片描述
集群规划
112:NameNode1 ResourceManager1 JournalNode1
113:NameNode2 ResourceManager2 JournalNode2
114:DataNode1 NodeManager1
115:DataNode2 NodeManager2

二、配置实现Hadoop的HA

  1. 主机配置
    bigdata112,bigdata113配置好Hadoop环境变量(作为NameNode)
  2. 配置bigdata112的hadoop
    core-site.xml
 <property><name>fs.defaultFS</name><value>hdfs://ns1</value></property><property><name>hadoop.tmp.dir</name><value>/root/training/hadoop-2.7.3/tmp</value></property><property><name>ha.zookeeper.quorum</name><value>bigdata112:2181,bigdata113:2181,bigdata114:2181</value></property>
  • fs.defaultFS:
    这个属性设置了Hadoop文件系统的默认URI。在这个例子中,它被设置为hdfs://ns1,这意味着Hadoop客户端将默认使用HDFS协议与逻辑名称(namespace)为ns1的HDFS集群进行交互。这通常用于配置了HDFS高可用性(HA)的集群,其中ns1是在hdfs-site.xml中通过dfs.nameservices属性定义的HDFS集群的逻辑名称。
  • hadoop.tmp.dir:
    这个属性指定了Hadoop临时文件的存储位置。在这个例子中,它被设置为/root/training/hadoop-2.7.3/tmp。Hadoop会在这个目录下创建一些临时文件,这些文件通常用于MapReduce作业的执行、HDFS的元数据检查点等。将hadoop.tmp.dir设置在一个有足够磁盘空间的位置是很重要的。
  • ha.zookeeper.quorum:
    这个属性指定了ZooKeeper集群的地址列表,用于HDFS高可用性(HA)配置中的故障转移和状态管理。在这个例子中,它包含了三个ZooKeeper节点的地址:bigdata112:2181,bigdata113:2181,bigdata114:2181。每个ZooKeeper节点的端口都是默认的2181。ZooKeeper集群用于协调HDFS NameNode之间的状态,确保在Active NameNode发生故障时,能够平滑地切换到Standby NameNode。

hdfs-site.xml

<property><name>dfs.nameservices</name><value>ns1</value></property><property><name>dfs.ha.namenodes.ns1</name><value>nn1,nn2</value></property><property><name>dfs.namenode.rpc-address.ns1.nn1</name><value>bigdata112:9000</value></property><property><name>dfs.namenode.http-address.ns1.nn1</name><value>bigdata112:50070</value></property><property><name>dfs.namenode.rpc-address.ns1.nn2</name><value>bigdata113:9000</value></property><property><name>dfs.namenode.http-address.ns1.nn2</name><value>bigdata113:50070</value></property><property><name>dfs.namenode.shared.edits.dir</name><value>qjournal://bigdata112:8485;bigdata113:8485;/ns1</value></property>
<property><name>dfs.journalnode.edits.dir</name><value>/root/training/hadoop-2.7.3/journal</value></property>
<property><name>dfs.ha.automatic-failover.enabled</name><value>true</value></property>
<property><name>dfs.client.failover.proxy.provider.ns1</name><value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value></property><property><name>dfs.ha.fencing.methods</name><value>
sshfence
shell(/bin/true)
</value></property><property><name>dfs.ha.fencing.ssh.private-key-files</name><value>/root/.ssh/id_rsa</value></property><property><name>dfs.ha.fencing.ssh.connect-timeout</name><value>30000</value></property>
  • HDFS逻辑名称和NameNode配置:
    dfs.nameservices:定义了HDFS集群的逻辑名称,这里是ns1。
    dfs.ha.namenodes.ns1:指定了ns1集群中所有的NameNode名称,即nn1和nn2。
    dfs.namenode.rpc-address.和dfs.namenode.http-address.:分别配置了nn1和nn2的RPC地址和HTTP地址。RPC地址用于NameNode之间的通信,HTTP地址用于通过浏览器访问NameNode的Web界面。
    JournalNode配置:
    dfs.namenode.shared.edits.dir:配置了NameNode之间共享的edits日志目录,这里使用了Quorum Journal Manager(QJM),并指定了JournalNode的地址和集群ID(/ns1)。
    dfs.journalnode.edits.dir:指定了JournalNode存储edits日志的本地目录。
  • 高可用性配置:
    dfs.ha.automatic-failover.enabled:启用了自动故障转移功能。
    dfs.client.failover.proxy.provider.ns1:指定了客户端使用的故障转移代理提供者,这里是Hadoop自带的ConfiguredFailoverProxyProvider。
  • 故障隔离(Fencing)配置:
    dfs.ha.fencing.methods:定义了故障转移时的隔离方法,这里使用了sshfence(通过SSH杀死NameNode进程)和shell(/bin/true)(一个总是返回成功的命令,通常用于测试)。
    dfs.ha.fencing.ssh.private-key-files:指定了SSH隔离方法所使用的私钥文件路径。
    dfs.ha.fencing.ssh.connect-timeout:设置了SSH连接的超时时间,单位是毫秒。

mapred-site.xml

<property><name>mapreduce.framework.name</name><value>yarn</value></property>

yarn-site.xml

<property><name>yarn.resourcemanager.ha.enabled</name><value>true</value></property>
<property><name>yarn.resourcemanager.cluster-id</name><value>yrc</value></property>
<property><name>yarn.resourcemanager.ha.rm-ids</name><value>rm1,rm2</value></property>
<property><name>yarn.resourcemanager.hostname.rm1</name><value>bigdata112</value></property>
<property><name>yarn.resourcemanager.hostname.rm2</name><value>bigdata113</value></property>
<property><name>yarn.resourcemanager.zk-address</name><value>bigdata112:2181,bigdata113:2181,bigdata114:2181</value></property>
<property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property>
  • 启用YARN ResourceManager的HA:通过设置yarn.resourcemanager.ha.enabled为true,启用了YARN ResourceManager的高可用性模式。这意味着集群中有多个ResourceManager实例在运行,其中一个是Active状态,其余是Standby状态。
  • 集群ID:yarn.resourcemanager.cluster-id被设置为yrc,这是YARN集群的唯一标识符,用于区分不同的YARN集群。
  • ResourceManager实例ID:yarn.resourcemanager.ha.rm-ids列出了所有ResourceManager实例的ID,这里是rm1和rm2。这些ID用于在配置中引用特定的ResourceManager实例。
  • ResourceManager主机名:通过yarn.resourcemanager.hostname.rm1和yarn.resourcemanager.hostname.rm2,分别指定了rm1和rm2实例运行的主机名,即bigdata112和bigdata113。
  • ZooKeeper地址:yarn.resourcemanager.zk-address配置了ZooKeeper集群的地址,ResourceManager使用ZooKeeper来协调状态信息,确保在高可用性模式下的正确故障转移。这里的ZooKeeper集群由bigdata112、bigdata113和bigdata114组成,每个节点的端口都是默认的2181。
  • NodeManager辅助服务:yarn.nodemanager.aux-services配置了NodeManager提供的辅助服务,这里设置为mapreduce_shuffle,这是MapReduce作业执行期间所必需的,用于shuffle阶段的数据传输。
  1. 修改slaves
    在bigdata112的slaves文件中,增加从节点(114,115)
  2. 设置Java环境
    hadoop-env.sh中设置本地的Javahome路径
  3. 创建目录tmp和journal
    在上述配置中已经体现
  4. 将hadoop目录复制给113,114,115
  5. 在112和113上启动journalnode
hadoop-daemon.sh start journalnode
  1. 在112上格式化HDFS
hdfs namenode -format

将112的tmp目录复制到113上(113为备用的主节点)

  1. 在112上格式化zookeeper
hdfs zkfc -formatZK
  1. 在112上启动Hadoop集群
start-dfs.sh
start-yarn.sh
  1. 113上手动启动resourcemanager
yarn-daemon.sh start resourcemanager

三、效果

这篇关于Hadoop的HA配置与实现(ZooKeeper)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109266

相关文章

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象