超分之最近邻插值、线性插值、双线性插值、双三次插值原理

2024-08-26 17:12

本文主要是介绍超分之最近邻插值、线性插值、双线性插值、双三次插值原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 插值与图像插值
    • 不同的插值方法
      • 最近邻域插值(Nearest Neighbor Interpolation)
      • 线性插值 (Linear Interpolation)
      • 双线性插值 (Bilinear Interpolation)
      • 双三次插值 (Bicubic Interpolation)

插值与图像插值

  • 插值:利用已知数据去预测位置数据。
  • 图像插值:给定一个像素点,根据它周围像素点的信息来对该像素点的值进行预测。

  图像插值问题类似于拟合问题,二者均为函数逼近或数值逼近的重要组成部分。但是两者的在于:对于给定的函数,插值:要求离散点“坐落在”函数曲线上从而满足约束;而 拟合:则希望离散点尽可能地 “逼近” 函数曲线。

图像插值示例(三倍放大):
  对于原图像的坐标点 (红色实心点),其在新图像上都能确定一一对应的坐标点 (红色实心点)。而对于新图像中因放大而的多出坐标点 (蓝色圈叉),则在原图像中找不到对应点了。
  插值技术就是通过某些规则/规范/约束(特定的拟合函数),获取这些多出坐标点的像素值。在这里插入图片描述
一维示例

  • ( x i − 1 , f ( x i − 1 ) ) 、 ( x i , f ( x i ) ) 、 ( x i + 1 , f ( x i + 1 ) ) (x_{i-1}, f(x_{i-1}))、(x_i,f(x_{i}))、(x_{i+1},f(x_{i+1})) (xi1,f(xi1))(xi,f(xi))(xi+1,f(xi+1)):已知的三个离散点坐标
  • f ( x ) f(x) f(x):插值算法的约束条件。
    如果想得到更密集、更精细的点,则可以给定坐标 x 1 x^1 x1 ,根据插值约束 f ( x ) f(x) f(x)得到对应的函数值 f ( x 1 ) f(x^1) f(x1)
    在这里插入图片描述
    总而言之,不同的插值方式,就是通过给定不同的插值函数约束,来得到不同的插值结果。

不同的插值方法

最近邻域插值(Nearest Neighbor Interpolation)

  • 一维示意图
    一维的最近邻插值的示意图
      坐标轴上各点 x i − 1 , x i , x i + 1 . . . x_{i-1},x_{i},x_{i+1} ... xi1xixi+1...两两对半等分间隔 (红色虚线划分),从而非边界的各坐标点都有一个等宽的邻域,并根据每个坐标点的值构成一个类似分段函数的函数约束,从而使各插值坐标点的值等同于所在邻域原坐标点的值。

  • 二维示意图
    在这里插入图片描述
       ( x 0 , y 0 ) 、 ( x 0 , y 1 ) 、 ( x 1 , y 0 ) 、 ( x 1 , y 1 ) (x_0, y_0)、(x_0, y_1)、(x_1, y_0)、(x_1, y_1) (x0,y0)(x0,y1)(x1,y0)(x1,y1)都是原图像上的坐标点,灰度值分别对应为 Q11、Q12、Q21、Q22。而灰度值未知的插值点 (x, y),根据最近邻插值方法的约束,其与坐标点 (x0, y0) 位置最接近 (即位于 (x0, y0) 的邻域内),故插值点 (x, y) 的灰度值 P = Q11。

  • 简而言之
    最近邻于插值:根据周围至少一个已知像素点,未知像素点x距离哪个已知像素点最近,他的像素值就是离已知像素点的像素值。
    在这里插入图片描述

线性插值 (Linear Interpolation)

  • 一维示意图
    在这里插入图片描述
      坐标轴上各点 x i − 1 , x i , x i + 1 . . . x_{i-1},x_i,x_{i+1} ... xi1xixi+1...的值“两两直接相连”为线段,从而构成了一条连续的约束函数。而插值坐标点例如 x,根据约束函数其值应为 f(x)。

  • 二维示意图
    在这里插入图片描述
       ( x 0 , y 0 ) 、 ( x 1 , y 1 ) (x_0, y_0)、(x_1, y_1) (x0,y0)(x1,y1)都是原图像上的坐标点,灰度值分别对应为 y0 和 y1。而灰度值未知的插值点 x,在 ( x 0 , y 0 ) 、 ( x 1 , y 1 ) (x_0, y_0)、(x_1, y_1) (x0,y0)(x1,y1)构成的一次函数上,其灰度值 y 即为:
    y = y 0 + ( x − x 0 ) y 1 − y 0 x 1 − x 0 y = y_0 + (x - x_0)\frac{y_1-y_0}{x_1-x_0} y=y0+(xx0)x1x0y1y0

  • 简而言之
    线性插值:根据周围至少两个已知像素点,来构造一个线性函数,将未知像素点x带入,从而求出该未知像素点的像素值。

双线性插值 (Bilinear Interpolation)

  • 定性斜视示意图
    在这里插入图片描述
      坐标轴上 ( x 0 , y 0 ) 、 ( x 0 , y 1 ) 、 ( x 1 , y 0 ) 、 ( x 1 , y 1 ) (x_0, y_0)、(x_0, y_1)、(x_1, y_0)、(x_1, y_1) (x0,y0)(x0,y1)(x1,y0)(x1,y1)均为原图像上的像素坐标点,灰度值分别对应为 f ( x 0 , y 0 ) 、 f ( x 0 , y 1 ) 、 f ( x 1 , y 0 ) 、 f ( x 1 , y 1 ) f(x_0, y_0)、f(x_0, y_1)、f(x_1, y_0)、f(x_1, y_1) f(x0,y0)f(x0,y1)f(x1,y0)f(x1,y1)。而灰度值未知的插值点 (x, y),根据双线性插值法的约束:

    1. 先由 ( x 0 , y 0 ) 和 ( x 0 , y 1 ) (x_0, y_0) 和 (x_0, y_1) (x0,y0)(x0,y1)在 y 轴向作一维线性插值得到 像素点 ( x 0 , y ) (x_0, y) (x0,y)的像素值 f ( x 0 , y ) f(x_0, y) f(x0,y)、由像素坐标点 ( x 1 , y 0 ) 和 ( x 1 , y 1 ) (x_1, y_0) 和 (x_1, y_1) (x1,y0)(x1,y1) 在 y 轴向作一维线性插值得到 像素点 ( x 1 , y ) (x_1, y) (x1,y)的像素值 f ( x 1 , y ) f(x_1, y) f(x1,y)
    2. 再由 ( x 0 , y ) 和 ( x 1 , y ) (x_0, y) 和 (x_1, y) (x0,y)(x1,y)在 x 轴向作一维线性插值得到插值点 ( x , y ) (x, y) (x,y) 的像素值 f ( x , y ) f(x, y) f(x,y)( 一维线性插值先作 x 轴向再作 y 轴向,得到的结果完全相同,仅为顺序先后的区别)
  • 二维定量俯视示意图
    在这里插入图片描述

这里: 一维线性插值先作 x 轴向再作 y 轴向

  1. 先由像素坐标点 ( x 0 , y 0 ) 和 ( x 1 , y 0 ) (x_0, y_0) 和 (x_1, y_0) (x0,y0)(x1,y0)在 x轴向作一维线性插值得到 像素点 ( x , y 0 ) (x, y_0) (x,y0)的像素值 f ( x 0 , y ) f(x_0, y) f(x0,y)
    f ( x , y 0 ) = x 1 − x x 1 − x 0 f ( x 0 , y 0 ) + x − x 0 x 1 − x 0 f ( x 1 , y 0 ) f(x, y_0) = \frac{x_1 - x}{x_1 - x_0}f(x_0, y_0) + \frac{x - x_0}{x_1 - x_0}f(x_1, y_0) f(x,y0)=x1x0x1xf(x0,y0)+x1x0xx0f(x1,y0)
    由像素坐标点 ( x 0 , y 1 ) 和 ( x 1 , y 1 ) (x_0, y_1) 和 (x_1, y_1) (x0,y1)(x1,y1) 在 x 轴向作一维线性插值得到 像素点 ( x , y 1 ) (x, y_1) (x,y1)的像素值 f ( x 1 , y ) f(x_1, y) f(x1,y):
    f ( x , y 1 ) = x 1 − x x 1 − x 0 f ( x 0 , y 1 ) + x − x 0 x 1 − x 0 f ( x 1 , y 1 ) f(x, y_1) = \frac{x_1 - x}{x_1 - x_0}f(x_0, y_1) + \frac{x - x_0}{x_1 - x_0}f(x_1, y_1) f(x,y1)=x1x0x1xf(x0,y1)+x1x0xx0f(x1,y1)
  2. 再由 ( x , y 0 ) 和 ( x , y 1 ) (x, y_0) 和 (x, y_1) (x,y0)(x,y1)在 y 轴向作一维线性插值得到插值点 ( x , y ) (x, y) (x,y) 的像素值 f ( x , y ) f(x, y) f(x,y)
    f ( x , y ) = y 1 − y y 1 − y 0 f ( x , y 0 ) + y − y 0 y 1 − y 0 f ( x , y 1 ) f(x, y) = \frac{y_1 - y}{y_1 - y_0}f(x, y_0) + \frac{y - y_0}{y_1 - y_0}f(x, y_1) f(x,y)=y1y0y1yf(x,y0)+y1y0yy0f(x,y1)
  • 简而言之
    线性插值:根据周围至少四个已知像素点,先将四个像素点两两在x轴作线性插值,得到未知像素y轴方向的两个像素值,然后将其在y轴作线性插值,最终得到目标像素点的像素值
    在这里插入图片描述

双三次插值 (Bicubic Interpolation)

  插值点 (x, y) 的像素值 f(x, y) 通过矩形网格中 最近的十六个采样点的加权平均 得到,而 各采样点的权重由该点到待求插值点的距离确定,此距离包括 水平和竖直 两个方向上的距离。

  • 二维俯视示意图
    在这里插入图片描述
      设待求插值点坐标为 (i+u, j+v),已知其周围的 16 个像素坐标点 (网格) 的灰度值,还需要计算 16 个点各自的权重。
      以像素坐标点 (i, j) 为例,因为该点在 y 轴和 x 轴方向上与待求插值点 (i+u, j+v) 的距离分别为 u 和 v,所以的权重为 w(u) × w(v),其中 w(·) 是插值权重核 (可以理解为定义的权重函数)。同理可得其余 15 个像素坐标点各自的权重。那么,待求插值点 (i+u, j+v) 的灰度值 f(i+u, j+v) 将通过如下计算得到:
    f ( i + u , j + v ) = − A × B × C f(i+u, j+v) =- A × B × C f(i+u,j+v)=A×B×C
    其中,各项由向量或矩阵表示:
    d1
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    插值权重核W(·)为:
    W ( x ) = { ( a + 2 ) ∣ x ∣ 3 − ( a + 3 ) ∣ x ∣ 3 + 1 f o r ∣ x ∣ ⩽ 1 a ∣ x ∣ 3 − 5 a ∣ x ∣ 2 + 8 a ∣ x ∣ − 4 a f o r 1 < ∣ x ∣ < 2 0 o t h e r w i s e , a 通常取 − 0.5 W(x)=\begin{cases} (a+2)|x|^3 - (a+3)|x|^3 + 1 & for \ |x| \leqslant 1\\ a|x|^3 - 5a|x|^2 + 8a|x| - 4a & for \ 1<|x|<2 \\ 0 & otherwise \end{cases},a通常取-0.5 W(x)= (a+2)x3(a+3)x3+1ax35ax2+8ax4a0for x1for 1<x<2otherwisea通常取0.5

当a = -0.5时, W(·)为:
W ( x ) = { 1.5 ∣ x ∣ 3 − 2.5 ∣ x ∣ 3 + 1 f o r ∣ x ∣ ⩽ 1 − 0.5 ∣ x ∣ 3 + 2.5 ∣ x ∣ 2 − 4 ∣ x ∣ + 2 f o r 1 < ∣ x ∣ < 2 0 o t h e r w i s e , a 通常取 − 0.5 W(x)=\begin{cases} 1.5|x|^3 - 2.5|x|^3 + 1 & for \ |x| \leqslant 1\\ -0.5|x|^3 +2.5|x|^2 -4|x| +2 & for \ 1<|x|<2 \\ 0 & otherwise \end{cases},a通常取-0.5 W(x)= 1.5∣x32.5∣x3+10.5∣x3+2.5∣x24∣x+20for x1for 1<x<2otherwisea通常取0.5

在这里插入图片描述
参考链接:

双三次插值算法(bicubic interpolation)与图形学和计算方法的关系

【图像处理】详解 最近邻插值、线性插值、双线性插值、双三次插值

这篇关于超分之最近邻插值、线性插值、双线性插值、双三次插值原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109171

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

poj1330(LCA最近公共祖先)

题意:求最近公共祖先 思路:之前学习了树链剖分,然后我就用树链剖分的一小部分知识就可以解这个题目了,记录每个结点的fa和depth。然后查找时,每次将depth大的结点往上走直到x = y。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类