手算神经网络MAC和FLOP

2024-08-26 13:36
文章标签 mac 神经网络 手算 flop

本文主要是介绍手算神经网络MAC和FLOP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本文中,我们将深入探讨神经网络背景下的 MAC(乘法累加运算)和 FLOP(浮点运算)概念。通过学习如何使用笔和纸手动计算这些内容,你将对各种网络结构的计算复杂性和效率有基本的了解。

这是 colab 笔记本中一个功能齐全的示例。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割 

1、为什么要计算MAC和FLOP

首先让我们看下MAC和FLOP的定义。

  • FLOP:FLOP(浮点运算)可视为加法、减法、乘法或除法运算。
  • MAC:MAC(乘法累加)运算本质上是乘法后跟加法,即 MAC = a * b + c。它算作两个 FLOP(一个用于乘法,一个用于加法)。

解 MAC 和 FLOP 不仅仅是一项学术活动;它是优化神经网络性能和效率的关键组成部分。它有助于设计计算效率高且有效的模型,最终在训练和推理阶段节省时间和资源。

  • 资源效率。了解 FLOP 有助于估计神经网络的计算成本。通过优化 FLOP 的数量,可以减少训练或运行神经网络所需的时间。
  • 内存效率。MAC 操作通常决定网络的内存使用量,因为它们与网络中的参数和激活数量直接相关。减少 MAC 有助于提高网络内存效率。
  • 功率效率。FLOP 和 MAC 操作都会影响运行神经网络的硬件的功耗。通过优化这些指标,可以潜在地降低运行网络的能耗,这在移动和嵌入式设备中尤为重要。
  • 修剪和量化。了解 FLOP 和 MAC 有助于通过修剪(删除不必要的连接)和量化(降低权重和激活的精度)等技术优化神经网络,旨在降低计算和内存成本。
  • 模型之间的比较。FLOP 和 MAC 提供了一种比较不同模型的计算复杂度的方法,这可以作为选择特定应用模型的标准。
  • 硬件基准测试。这些指标还可用于对不同硬件平台在运行神经网络时的性能进行基准测试。
  • 实时应用。对于实时应用,尤其是在计算资源有限的边缘设备上,理解和优化这些指标对于确保网络能够在应用的时间限制内运行至关重要。
  • 电池寿命。在电池供电的设备中,降低神经网络的计算成本(从而降低能耗)有助于延长电池寿命。
  • 设计新算法。研究人员可以在开发新算法或神经网络架构时使用这些指标作为指导方针,旨在提高计算效率而不牺牲准确性。

2、神经网络层的MAC和FLOP计算

接下来让我们计算浮点运算或乘法累加运算的数量,以了解每层的计算复杂度。

2.1 全连接层(密集层)

现在,我们将创建一个具有 3 层的简单神经网络,并开始计算所涉及的运算。以下是计算第一线性层(即全连接(或密集)层)中的运算的公式:

对于具有 I 个输入和 O 个输出的全连接层,运算数量如下:

  • MAC:I × O
  • FLOP:2 × (I × O)(因为每个 MAC 算作两个 FLOP)
class SimpleLinearModel(nn.Module):def __init__(self):super(SimpleLinearModel,self).__init__()self.fc1 = nn.Linear(in_features=10, out_features=20, bias=False)self.fc2 = nn.Linear(in_features=20, out_features=15, bias=False)self.fc3 = nn.Linear(in_features=15, out_features=1, bias=False)def forward(self, x):x = self.fc1(x)x = F.relu(x)x = self.fc2(x)F.relu(x)x = self.fc3(x)return xlinear_model = SimpleLinearModel().cuda()
sample_data = torch.randn(1, 10).cuda()
步骤 1:确定层参数对于给定的模型,我们有三个线性层,定义为:
  • fc1:10 个输入特征,20 个输出特征
  • fc2:20 个输入特征,15 个输出特征
  • fc3:15 个输入特征,1 个输出特征
步骤 2:计算 FLOP 和 MAC 现在,计算每个层的 MAC 和 FLOP:

层 fc1:

  • MACs = 10 × 20 = 200
  • FLOPs = 2 × MACs = 2 × 200 = 400

层 fc2:

  • MACs = 20 × 15 = 300
  • FLOPs = 2 × MACs = 2 × 300 = 600

层 fc3:

  • MACs = 15 × 1 = 15
  • FLOPs = 2 × MACs = 2 × 15 = 30
步骤 3:总结结果最后,为了找到单个输入通过整个网络的 MAC 和 FLOP 总数,我们将所有层的结果相加:
  • 总 MAC = MACs(fc1) + MACs(fc2) + MACs(fc3) = 200 + 300 + 15 = 515
  • 总 FLOP = FLOPs(fc1) + FLOPs(fc2) + FLOPs(fc3) = 400 + 600 + 30 = 1030

我们可以使用 torchprofile 库来验证给定神经网络模型的 FLOP 和 MAC 计算。操作方法如下:

macs = profile_macs(linear_model, sample_data)
print(macs)#515

2.2 卷积神经网络 (CNN)

现在,让我们确定一个简单的卷积模型的 MAC(乘法累加)和 FLOP(浮点运算)。这个计算可能比我们之前使用密集层的示例更复杂一些,主要是由于步幅、填充和内核大小等因素。不过,我会将其分解,以便于我们学习。

class SimpleConv(nn.Module):def __init__(self):super(SimpleConv, self).__init__()self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)self.fc =  nn.Linear(in_features=32*28*28, out_features=10)def forward(self, x):x = self.conv1(x)x = F.relu(x)x = self.conv2(x)x = F.relu(x)x = x.view(x.shape[0], -1)x = self.fc(x)return xx = torch.rand(1, 1, 28, 28).cuda()
conv_model = SimpleConv().cuda()

计算卷积运算的重要注意事项:

  • 计算卷积核的运算时,务必记住核中的通道数应与输入中的通道数相匹配。例如,如果我们的输入是具有三个颜色通道的 RGB 图像,则核的尺寸将为 3x3x3,以说明输入的三个通道。
  • 为了演示的目的,我们将在整个卷积层中保持一致的图像大小。为此,我们将填充值和步幅值都设置为 1。
步骤 1:识别层参数

对于给定的模型,我们有两个卷积层和一个线性层,定义为:

  • conv1:1 个输入通道,16 个输出通道,核大小为 3
  • conv2:16 个输入通道,32 个输出通道
  • fc:322828 个输入特征,1 个输出特征。因为我们的图像在卷积层中没有改变
步骤 2:计算 FLOP 和 MAC 现在,计算每个层的 MAC 和 FLOP:

公式为 output_image_size * kernel shape * output_channels

Layer conv1:

  • MACs = 28 * 28 * 3 * 3 * 1 * 16 = 1,12,896
  • FLOPs = 2 × MACs = 2 × 200 = 2,25,792

Layer conv2:

  • MACs = 28 × 28 * 3 * 3 * 16 * 32 = 3,612,672
  • FLOPs = 2 × MACs = 2 × 300 = 600 = 7,225,344

Layer fc:

  • MACs = 32 * 28 * 28 * 10 = 250,880
  • FLOPs = 2 × MACs = 2 × 15 = 501,760
步骤 3:总结结果最后,为了找到单个输入通过整个网络的 MAC 和 FLOP 总数,我们将所有层的结果相加:
  • 总 MAC = MACs(conv1) + MACs(conv2) + MACs(fc) = 1,12,896 + 3,612,672 + 250,880 = 39,76,448
  • 总 FLOPs = FLOPs(fc1) + FLOPs(fc2) + FLOPs(fc3) = 2,25,792 + 7,225,344 + 501,760 = 7,952,896

使用 torchprofile 库验证操作:

macs = profile_macs(conv_model,(x,))
print(macs)#3976448

2.3 自注意力模块

在介绍了线性层和卷积层的 MAC 之后,我们的下一步是确定自注意力模块的 FLOP(浮点运算),这是大型语言模型中的关键组件。此计算对于理解此类模型的计算复杂性至关重要。让我们深入研究一下。

class SimpleAttentionBlock(nn.Module):def __init__(self, embed_size, heads):super(SimpleAttentionBlock, self).__init__()self.embed_size = embed_sizeself.heads = headsself.head_dim = embed_size // headsassert (self.head_dim * heads == embed_size), "Embedding size needs to be divisible by heads"self.values = nn.Linear(self.embed_size, self.embed_size, bias=False)self.keys = nn.Linear(self.embed_size, self.embed_size, bias=False)self.queries = nn.Linear(self.embed_size, self.embed_size, bias=False)self.fc_out = nn.Linear(heads * self.head_dim, embed_size)def forward(self, values, keys, queries, mask):N = queries.shape[0]value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1]print(values.shape)values = self.values(values).reshape(N,  self.heads, value_len, self.head_dim)keys = self.keys(keys).reshape(N, self.heads, key_len, self.head_dim)queries = self.queries(queries).reshape(N,  self.heads, query_len, self.head_dim)energy = torch.matmul(queries, keys.transpose(-2, -1))        if mask is not None:energy = energy.masked_fill(mask == 0, float("-1e20"))attention = torch.nn.functional.softmax(energy, dim=3)out = torch.matmul(attention, values).reshape(N, query_len, self.heads * self.head_dim)return self.fc_out(out)
步骤 1:识别层参数

线性变换

让我们定义 hyper_params

  • batch_size = 1
  • seq_len = 10
  • embed_size = 256

在注意力块中,我们有三个线性变换(用于查询、键和值),最后一个(fc_out)。

  • 输入大小:[batch_size, seq_len, embed_size]
  • 线性变换矩阵:[embed_size, embed_size]
  • MAC:batch_size×seq_len×embed_size×embed_size

查询、键、值线性变换:

  • 查询变换的MAC = 1 * 10 * 256 * 256 = 6,55,360
  • 键变换的MAC = 1 * 10 * 256 * 256 = 6,55,360
  • 值变换的MAC = 1 * 10 * 256 * 256 = 6,55,360

能量计算:查询(重塑)点键(重塑)——点积运算。

  • Macs:batch_size×seq_len×seq_len×heads×head_dim

查询和键点积

  • MACS = 1 * 10 * 10 * 32 [32 因为 256/8 除以 heads] = 25,600

注意权重和值计算的输出:注意权重点值(重塑)——另一个点积运算。

  • Macs:batch_size×seq_len×seq_len×heads×head_dim

注意力和价值点积

  • Macs = 1 * 10 * 10 * 32 = 25,600

全连接输出 (fc_out)

  • Macs:batch_size×seq_len×heads×head_dim×embed_size
  • Macs = 1 * 10 * 8 * 32 * 256 = 6,55,360
步骤 2:总结结果
  • 总 MACs = MACs(conv1) + MACs(conv2) + MACs(fc) = 6,55,360 + 6,55,360 + 6,55,360 + 25,600 + 25,600 + 6,55,360 = 26,72,640
  • 总计FLOPs = 2 * 总 MAC = 53,45,280

使用 torchprofile 库验证操作:

# Create an instance of the model
model = SimpleAttentionBlock(embed_size=256, heads=8).cuda()# Generate some sample data (batch of 5 sequences, each of length 10, embedding size 256)
values = torch.randn(1, 10, 256).cuda()
keys = torch.randn(1, 10, 256).cuda()
queries = torch.randn(1, 10, 256).cuda()# No mask for simplicity
mask = None
# Forward pass with the sample data
macs = profile_macs(model, (values, keys, queries, mask))
print(macs)#2672640

3、结束语

在整个计算过程中,我们主要考虑批次大小为 1。但是,需要注意的是,针对较大批次大小缩放 MAC 和 FLOP 非常简单。

要计算批次大小大于 1 的 MAC 或 FLOP,只需将批次大小为 1 时获得的总 MAC 或 FLOP 乘以所需的批次大小值即可。这种缩放允许你估算神经网络模型中各种批次大小的计算要求。

请记住,结果将直接随批次大小线性缩放。例如,如果批次大小为 32,则可以通过将批次大小为 1 的值乘以 32 来获得 MAC 或 FLOP。


原文链接:手算神经网络MAC和FLOP - BimAnt

这篇关于手算神经网络MAC和FLOP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108707

相关文章

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

mac安装brew 与 HomeBrew

/bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)" curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh >> brew_install BREW_REPO="

mac jdk 1.7 dmg 官方版

百度云下载 https://pan.baidu.com/s/1SQiidrPFF5aZr4xlx0ekoQ https://pan.baidu.com/s/1SQiidrPFF5aZr4xlx0ekoQ   补充说明: 实际上oracle对于历史版本的jdk都有归档可以在官方网站上下载,只是需要注册个号就可以了。 地址如下: https://www.oracle.com/cn/java

编程应该用 Mac 还是 PC ?

『有人的地方,就有江湖』—徐克。笑傲江湖。     序     一个竞争的市场,就会有对立的产生,这世界存在著很多不同的领域,领域好比是个江湖的缩影,因此就有许多门派的纷争,例如说浏览器领域有著最大宗的IE派,门派成长速度飞快,武功版号跳的跟台湾物价指数一样快的Chrome门,不断被模仿,一直被超越的Opera派;韧性极强,一直对抗几大势力的Firefox派等等,程序语言也有自己的领域

机器学习之监督学习(三)神经网络

机器学习之监督学习(三)神经网络基础 0. 文章传送1. 深度学习 Deep Learning深度学习的关键特点深度学习VS传统机器学习 2. 生物神经网络 Biological Neural Network3. 神经网络模型基本结构模块一:TensorFlow搭建神经网络 4. 反向传播梯度下降 Back Propagation Gradient Descent模块二:激活函数 activ

图神经网络框架DGL实现Graph Attention Network (GAT)笔记

参考列表: [1]深入理解图注意力机制 [2]DGL官方学习教程一 ——基础操作&消息传递 [3]Cora数据集介绍+python读取 一、DGL实现GAT分类机器学习论文 程序摘自[1],该程序实现了利用图神经网络框架——DGL,实现图注意网络(GAT)。应用demo为对机器学习论文数据集——Cora,对论文所属类别进行分类。(下图摘自[3]) 1. 程序 Ubuntu:18.04

VMware Fusion Pro 13 Mac版虚拟机 安装Win11系统教程

Mac分享吧 文章目录 Win11安装完成,软件打开效果一、VMware安装Windows11虚拟机1️⃣:准备镜像2️⃣:创建虚拟机3️⃣:虚拟机设置4️⃣:安装虚拟机5️⃣:解决连不上网问题 安装完成!!! Win11安装完成,软件打开效果 一、VMware安装Windows11虚拟机 首先确保自己的mac开启了网络共享。不然虚拟机连不上👀的 1️⃣:准备镜像

Rhinoceros 8 for Mac/Win:重塑三维建模边界的革新之作

Rhinoceros 8(简称Rhino 8),作为一款由Robert McNeel & Assoc公司开发的顶尖三维建模软件,无论是对于Mac还是Windows用户而言,都是一款不可多得的高效工具。Rhino 8以其强大的功能、广泛的应用领域以及卓越的性能,在建筑设计、工业设计、产品设计、三维动画制作、科学研究及机械设计等多个领域展现出了非凡的实力。 强大的建模能力 Rhino 8支持多种建

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

图神经网络(2)预备知识

1. 图的基本概念         对于接触过数据结构和算法的读者来说,图并不是一个陌生的概念。一个图由一些顶点也称为节点和连接这些顶点的边组成。给定一个图G=(V,E),  其 中V={V1,V2,…,Vn}  是一个具有 n 个顶点的集合。 1.1邻接矩阵         我们用邻接矩阵A∈Rn×n表示顶点之间的连接关系。 如果顶点 vi和vj之间有连接,就表示(vi,vj)  组成了