《数据结构(C语言版)第二版》第六章-图(算法设计题)

2024-08-26 12:52

本文主要是介绍《数据结构(C语言版)第二版》第六章-图(算法设计题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

习题1

分别以邻接矩阵和邻接表作为存储结构,实现以下图的基本操作:
①增加一个新顶点v, InsertVex(G, v);
②删除顶点v及其相关的边,DeleteVex(G,v);
③增加一条边<v, w>, InsertArc(G, v, w);
④删除一条边<v, w>, DeleteArc(G, v, w)。

以邻接矩阵作为存储结构(有向图)

#include <stdio.h>
#include <stdlib.h>#define MaxInt 32767
#define MVNum 100typedef char VerTexType;
typedef int ArcType;typedef struct
{VerTexType vexs[MVNum];ArcType arcs[MVNum][MVNum];int vexnum;int arcnum;
}AMGraph;void CreateDG(AMGraph& G);
int LocateVex(AMGraph& G, VerTexType v);
void printfAMGraph(AMGraph& G);
void InsertVex(AMGraph& G, VerTexType v);
void DeleteVex(AMGraph& G, VerTexType v);
void InsertArc(AMGraph& G, VerTexType v, VerTexType w);
void DeleteArc(AMGraph& G, VerTexType v, VerTexType w);int main()
{AMGraph G = { {'\0'}, {0}, 0, 0 };CreateDG(G);printfAMGraph(G);printf("\n\n增加一个点'5'后:\n");InsertVex(G, '5');printfAMGraph(G);printf("\n\n删除一个点'4'后:\n");DeleteVex(G, '4');printfAMGraph(G);printf("\n\n增加一条弧<5,2>后:\n");InsertArc(G, '5', '2');printfAMGraph(G);printf("\n\n删除一条弧<5,2>后:\n");DeleteArc(G, '5', '2');printfAMGraph(G);return 0;
}//采用邻接矩阵表示法创建有向图
void CreateDG(AMGraph& G)
{int i = 0;int j = 0;int k = 0;VerTexType v1 = '\0';VerTexType v2 = '\0';ArcType w = 0;printf("请输入有向图的总顶点数:");scanf_s(" %d", &G.vexnum);printf("请输入有向图的总边数:");scanf_s(" %d", &G.arcnum);for (i = 0; i < G.vexnum; ++i){printf("请输入第%d个顶点储存的元素:", i + 1);scanf_s(" %c", &G.vexs[i], sizeof(VerTexType));}//初始化邻接矩阵,将边的权值均置为0for (i = 0; i < G.vexnum; ++i){for (j = 0; j < G.vexnum; ++j){G.arcs[i][j] = 0;}}//构造邻接矩阵for (k = 0; k < G.arcnum; ++k){printf("请输入第%d条边依附的两个顶点(用空格间隔,输入结束后按回车) : ", k + 1);scanf_s(" %c %c", &v1, sizeof(VerTexType), &v2, sizeof(VerTexType));i = LocateVex(G, v1);j = LocateVex(G, v2);G.arcs[i][j] = 1;}
}//在G的顶点表vexs中获取字符v的下标(数组G.vexs的下标从0开始)
int LocateVex(AMGraph& G, VerTexType v)
{int i = 0;for (i = 0; i < G.vexnum && (G.vexs[i] != v); ++i){;}return i;
}//打印邻接矩阵表示法中的顶点表vexs和邻接矩阵arcs
void printfAMGraph(AMGraph& G)
{int i = 0;int j = 0;printf("各顶点为:");for (i = 0; i < G.vexnum; i++){printf("%c ", G.vexs[i]);}printf("\n邻接矩阵为:\n");for (i = 0; i < G.vexnum; i++){for (j = 0; j < G.vexnum; j++){if (G.arcs[i][j] == 32767){printf("%d  ", G.arcs[i][j]);}else{printf("%d      ", G.arcs[i][j]);}}printf("\n");}
}//增加一个新顶点v, InsertVex(G, v)
void InsertVex(AMGraph &G, VerTexType v)
{G.vexs[G.vexnum] = v;G.vexnum++;
}//删除顶点v及其相关的边,DeleteVex(G, v)
void DeleteVex(AMGraph& G, VerTexType v)
{int k = 0;k = LocateVex(G, v);int i = 0;int j = 0;int m = k;//从第k+2个元素起,数组vexs中的每一个元素都向前移动一个for (i = k+1,m = k; i < G.vexnum; i++,m++){G.vexs[m] = G.vexs[i];}//从第k+1行起,邻接矩阵中的每一行都向上移一行for (i = k + 1, m = k; i < G.vexnum; i++,m++){for (j = 0; j < G.vexnum; j++){G.arcs[m][j] = G.arcs[i][j];}}//从第k+1列起,邻接矩阵中的每一行都向前移一列for (j = k + 1, m = k; j < G.vexnum; j++, m++){for (i = 0; i < G.vexnum; i++){G.arcs[i][m] = G.arcs[i][j];}}//最后一行全部变为0for (i = 0; i < G.vexnum; i++){G.arcs[G.vexnum - 1][i] = 0;}//最后一列全部变为0for (i = 0; i < G.vexnum; i++){G.arcs[i][G.vexnum - 1] = 0;}G.vexnum--;
}//增加一条边<v, w>, InsertArc(G, v, w); 
void InsertArc(AMGraph &G, VerTexType v, VerTexType w)
{int i = LocateVex(G, v);int j = LocateVex(G, w);G.arcs[i][j] = 1;G.arcnum++;
}//删除一条边<v, w>, DeleteArc(G, v, w)。
void DeleteArc(AMGraph &G, VerTexType v, VerTexType w)
{int i = LocateVex(G, v);int j = LocateVex(G, w);G.arcs[i][j] = 0;G.arcnum--;
}

在这里插入图片描述
在这里插入图片描述

以邻接表作为存储结构(无向图)

#include <stdio.h>
#include <stdlib.h>#define MVNum 100typedef int OtherInfo;   //假设在边结点中的数据域存储边的权值,且边的权值类型为整型
typedef char VerTexType;  //假设顶点的数据类型为字符型typedef struct ArcNode
{int adjvex;struct ArcNode* nextarc;OtherInfo info;
}ArcNode;  //边结点typedef struct VNode
{VerTexType data;ArcNode* firstarc;
}VNode, AdjList[MVNum];  //表头结点typedef struct
{AdjList vertices;  //存储所有顶点int vexnum;  //顶点总数int arcnum;  //总边数
}ALGraph;  //图的信息void CreateUDG(ALGraph& G);
int LocateVex(ALGraph& G, VerTexType v);
void printALGraph(ALGraph& G);
void InsertVex(ALGraph& G, VerTexType v);
void DeleteVex(ALGraph& G, VerTexType v);
void InsertArc(ALGraph& G, VerTexType v, VerTexType w);
void DeleteArc(ALGraph& G, VerTexType v, VerTexType w);int main()
{ALGraph G = { {'\0',NULL}, 0,0 };CreateUDG(G);printALGraph(G);printf("\n\n\n增加一个点'6'后:\n");InsertVex(G, '6');printALGraph(G);printf("\n\n\n删除一个点'4'后:\n");DeleteVex(G, '4');printALGraph(G);printf("\n\n\n增加一条边(6,2)后:\n");InsertArc(G, '6', '2');printALGraph(G);printf("\n\n\n删除一条边(6,2)后:\n");DeleteArc(G, '6', '2');printALGraph(G);return 0;
}void CreateUDG(ALGraph& G)
{int i = 0;int k = 0;VerTexType v1 = 0;VerTexType v2 = 0;int j = 0;ArcNode* p1 = NULL;ArcNode* p2 = NULL;printf("请输入无向图的总顶点数:");scanf_s(" %d", &G.vexnum);printf("请输入无向图的总边数:");scanf_s(" %d", &G.arcnum);for (i = 0; i < G.vexnum; ++i){printf("请输入第%d个顶点的值:", i + 1);scanf_s(" %c", &(G.vertices[i].data));G.vertices[i].firstarc = NULL;   //初始化}for (k = 0; k < G.arcnum; k++){printf("请输入第%d条边依附的两个顶点(用空格间隔,输入结束后按回车): ", k + 1);scanf_s(" %c %c", &v1, sizeof(VerTexType), &v2, sizeof(VerTexType));i = LocateVex(G, v1);j = LocateVex(G, v2);p1 = (ArcNode*)malloc(sizeof(ArcNode));p1->adjvex = j;p1->nextarc = G.vertices[i].firstarc;G.vertices[i].firstarc = p1;  //将新结点*p1插入顶点Vi的边表头部p2 = (ArcNode*)malloc(sizeof(ArcNode));p2->adjvex = i;p2->nextarc = G.vertices[j].firstarc;G.vertices[j].firstarc = p2;  //将与*p1对称的新的边结点*p2插入顶点Vj的边表头部}
}//在G的顶点表vexs中获取字符v的下标(数组G.vexs的下标从0开始)
int LocateVex(ALGraph& G, VerTexType v)
{int i = 0;for (i = 0; i < G.vexnum && (G.vertices[i].data != v); ++i){;}return i;
}//打印邻接表
void printALGraph(ALGraph& G)
{int i = 0;ArcNode* pMove = NULL;for (i = 0; i < G.vexnum; i++){printf("\n第%d个顶点为:%c", i + 1, G.vertices[i].data);pMove = G.vertices[i].firstarc;if (pMove){printf("\n与第%d个顶点相邻接的每个顶点为:", i + 1);while (pMove){printf("%c ",G.vertices[pMove->adjvex].data);pMove = pMove->nextarc;}}else{printf("\n没有与第%d个顶点相邻接的顶点。", i + 1);}}
}//增加一个新顶点v, InsertVex(G, v)
void InsertVex(ALGraph&G, VerTexType v)
{G.vertices[G.vexnum].data = v;G.vertices[G.vexnum].firstarc = NULL;G.vexnum++;
}//删除顶点v及其相关的边,DeleteVex(G, v)
void DeleteVex(ALGraph& G, VerTexType v)
{int i = 0;int j = 0;int k = 0;int m = 0;ArcNode* p = NULL;int num = 0;k = LocateVex(G, v);for (i = 0; i < G.vexnum; i++){p = G.vertices[i].firstarc;if (i != k && p){if (p && p->adjvex == k){G.vertices[i].firstarc = p->nextarc;free(p);p = NULL;}else{ArcNode* Pre = p;while (p && p->adjvex != k){Pre = p;p = p->nextarc;}if (!p){continue;}else{Pre->nextarc = p->nextarc;free(p);p = NULL;}}}if (i == k){while (p){ArcNode* temp = p;p = p->nextarc;free(temp);temp = NULL;}}}G.vexnum--;//从第k+2个元素起,数组vexs中的每一个元素都向前移动一个for (i = k; i < G.vexnum; i++){G.vertices[i]= G.vertices[i+1];}// 清空数组vexs中最后一个顶点的信息G.vertices[G.vexnum].data = '\0';G.vertices[G.vexnum].firstarc = NULL;//更新所有边表中的顶点索引/*  删除顶点后,顶点数组中的顶点被向前移动了一位,这意味着比被删除顶点索引高的顶点的索引都减少了 1。否则,它们会仍然指向旧的索引位置及顶点值。*/for (i = 0; i < G.vexnum; i++){p = G.vertices[i].firstarc;while (p){if (p->adjvex > k)p->adjvex--; // 如果该边指向的顶点索引大于k,则减1p = p->nextarc;}}
}//增加一条边(v, w), InsertArc(G, v, w); 
void InsertArc(ALGraph& G, VerTexType v, VerTexType w)
{int i = LocateVex(G, v);int j = LocateVex(G, w);ArcNode* p = (ArcNode*)malloc(sizeof(ArcNode));p->adjvex = j;p->nextarc = G.vertices[i].firstarc;G.vertices[i].firstarc = p;ArcNode* q = (ArcNode*)malloc(sizeof(ArcNode));q->adjvex = i;q->nextarc = G.vertices[j].firstarc;G.vertices[j].firstarc = q;G.arcnum++;
}//删除一条边(v, w), DeleteArc(G, v, w)。
void DeleteArc(ALGraph& G, VerTexType v, VerTexType w)
{int i = LocateVex(G, v);int j = LocateVex(G, w);ArcNode *p1 = G.vertices[i].firstarc;ArcNode *p2 = G.vertices[j].firstarc;if (p1->adjvex == j){G.vertices[i].firstarc = p1->nextarc;free(p1);p1 = NULL;}else{ArcNode* pPre1 = NULL;while (p1->adjvex != j){pPre1 = p1;p1 = p1->nextarc;}pPre1->nextarc = p1->nextarc;free(p1);p1 = NULL;}if (p2->adjvex == i){G.vertices[j].firstarc = p2->nextarc;free(p2);p2 = NULL;}else{ArcNode* pPre2 = NULL;while (p2->adjvex != i){pPre2 = p2;p2 = p2->nextarc;}pPre2->nextarc = p2->nextarc;free(p2);p2 = NULL;}G.arcnum--;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

习题2

一个连通图采用邻接表作为存储结构,设计一个算法,实现从顶点v出发的深度优先遍历的非递归过程。

#include <stdio.h>
#include <stdlib.h>#define MVNum 100bool visited[MVNum];
//标记某个顶点是否被访问过。数组中初值均为 "false",如果被访问过,则置其相应的分量为 "true"typedef int OtherInfo;   //假设在边结点中的数据域存储边的权值,且边的权值类型为整型
typedef char VerTexType;  //假设顶点的数据类型为字符型typedef struct ArcNode
{int adjvex;struct ArcNode* nextarc;OtherInfo info;
}ArcNode;  //边结点typedef struct VNode
{VerTexType data;ArcNode* firstarc;
}VNode, AdjList[MVNum];  //表头结点typedef struct
{AdjList vertices;  //存储所有顶点int vexnum;  //顶点总数int arcnum;  //总边数
}ALGraph;  //图的信息typedef struct stackNode
{int data; //存放顶点的位置数struct stackNode* next;
}stackNode, * LinkStack;void CreateUDG(ALGraph& G);
int LocateVex(ALGraph& G, VerTexType v);
void printALGraph(ALGraph& G);
void InitStack(LinkStack& S);
void Push(LinkStack& S, int e);
void Pop(LinkStack& S, int& e);
int EmptyStack(LinkStack S);
void DFS_Nonrecursive(ALGraph G, int v);int main()
{ALGraph G = { {'\0',NULL}, 0,0 };int i = 0;int j = 0;CreateUDG(G);printALGraph(G);printf("\n");for (i = 0; i < G.vexnum; i++){printf("\n从第%d个顶点开始,采用邻接矩阵表示图的深度优先搜索遍历序列为:", i + 1);DFS_Nonrecursive(G, i + 1);//将visited数组初始化(重置visited数组)for (j = 0; j < G.vexnum; j++){visited[j] = false;}}return 0;
}void CreateUDG(ALGraph& G)
{int i = 0;int k = 0;VerTexType v1 = 0;VerTexType v2 = 0;int j = 0;ArcNode* p1 = NULL;ArcNode* p2 = NULL;printf("请输入无向图的总顶点数:");scanf_s(" %d", &G.vexnum);printf("请输入无向图的总边数:");scanf_s(" %d", &G.arcnum);for (i = 0; i < G.vexnum; ++i){printf("请输入第%d个顶点的值:", i + 1);scanf_s(" %c", &(G.vertices[i].data));G.vertices[i].firstarc = NULL;   //初始化}for (k = 0; k < G.arcnum; k++){printf("请输入第%d条边依附的两个顶点(用空格间隔,输入结束后按回车): ", k + 1);scanf_s(" %c %c", &v1, sizeof(VerTexType), &v2, sizeof(VerTexType));i = LocateVex(G, v1);j = LocateVex(G, v2);p1 = (ArcNode*)malloc(sizeof(ArcNode));p1->adjvex = j;p1->nextarc = G.vertices[i].firstarc;G.vertices[i].firstarc = p1;  //将新结点*p1插入顶点Vi的边表头部p2 = (ArcNode*)malloc(sizeof(ArcNode));p2->adjvex = i;p2->nextarc = G.vertices[j].firstarc;G.vertices[j].firstarc = p2;  //将与*p1对称的新的边结点*p2插入顶点Vj的边表头部}
}//在G的顶点表vexs中获取字符v的下标(数组G.vexs的下标从0开始)
int LocateVex(ALGraph& G, VerTexType v)
{int i = 0;for (i = 0; i < G.vexnum && (G.vertices[i].data != v); ++i){;}return i;
}//打印邻接表
void printALGraph(ALGraph& G)
{int i = 0;ArcNode* pMove = NULL;for (i = 0; i < G.vexnum; i++){printf("\n第%d个顶点为:%c", i + 1, G.vertices[i].data);pMove = G.vertices[i].firstarc;if (pMove){printf("\n与第%d个顶点相邻接的每个顶点在图中的位置(下标值)为:", i + 1);while (pMove){printf("%d ", pMove->adjvex);pMove = pMove->nextarc;}}else{printf("\n没有与第%d个顶点相邻接的顶点。", i + 1);}}
}//初始化栈
void InitStack(LinkStack& S)
{S = NULL;
}//入栈
void Push(LinkStack& S, int e)
{struct stackNode* p = (struct stackNode*)malloc(sizeof(struct stackNode));if (!p){printf("元素入栈时,内存分配失败。\n");return;}p->data = e;p->next = S;S = p;
}//出栈
void Pop(LinkStack& S, int& e)
{if (!S){printf("元素出栈时,栈为空。\n");return;}struct stackNode* p = S;e = p->data;S = p->next;free(p);p = NULL;
}//判断栈空
int EmptyStack(LinkStack S)
{if (!S){return 1;}else{return 0;}
}//使用非递归的方式,完成采用邻接表表示图的深度优先搜索遍历
void DFS_Nonrecursive(ALGraph G, int v)
{printf("%c ", G.vertices[v - 1].data);visited[v - 1] = true;ArcNode* p = NULL;int w = 0;LinkStack S = NULL;InitStack(S);Push(S, v);while (!EmptyStack(S)){Pop(S, v);  // 弹出栈顶元素// 指向该顶点的第一个邻接顶点p = G.vertices[v - 1].firstarc;while (p != NULL){w = p->adjvex;if (!visited[w]){// p指向该被弹出顶点的第一个未被访问的邻接顶点printf("%c ", G.vertices[w].data);visited[w] = true;Push(S, w + 1);break;  //退出整个while(p)循环}p = p->nextarc;}}
}

在这里插入图片描述

习题3

设计一个算法,求图G中距离顶点v的最短路径长度最大的一个顶点,设v可达其余各个顶点。

#include <stdio.h>
#include <stdlib.h>#define MaxInt 32767
#define MVNum 100typedef char VerTexType;
typedef int ArcType;ArcType D[MVNum][MVNum]; //记录顶点Vi和Vj之间的最短路径长度。
int Path[MVNum][MVNum]; //最短路径上顶点Vj的前一顶点的序号(下标)。
//这两个数组中的关于顶点的每个下标,与G.vexs中各顶点的下标是一致的typedef struct
{VerTexType vexs[MVNum];ArcType arcs[MVNum][MVNum];int vexnum;int arcnum;
}AMGraph;void CreateAMGraph(AMGraph& G);
int LocateVex(AMGraph G, VerTexType v);
void printAMGraph(AMGraph G);
void ShortestPath_Floyd(AMGraph G);
void find(AMGraph G, int i, int j);
void printPath(AMGraph G);int main()
{AMGraph G = { {0},{0},0,0 };int i = 0;CreateAMGraph(G);printAMGraph(G);printf("\n");ShortestPath_Floyd(G);printPath(G);return 0;
}//创建带权有向网的邻接矩阵
void CreateAMGraph(AMGraph& G)
{int i = 0;int j = 0;int k = 0;VerTexType v1 = '\0';VerTexType v2 = '\0';ArcType w = 0;printf("请输入总顶点数:");scanf_s(" %d", &G.vexnum);printf("请输入总边数:");scanf_s(" %d", &G.arcnum);for (i = 0; i < G.vexnum; i++){printf("请输入第%d个顶点的值:", i + 1);scanf_s(" %c", &G.vexs[i]);for (j = 0; j < G.vexnum; j++){if (i != j){G.arcs[i][j] = MaxInt;}else{G.arcs[i][j] = 0;/* 在弗洛伊德算法中,每个顶点到其自身,(中间不存在弧),就已经是最短路径了。即使可以通过其它顶点中转再到达其本身,也是比其直接到其自身长的,所以把每个顶点与自身之间的权值均设为0.  */}}}for (k = 0; k < G.arcnum; k++){printf("请输入第%d条边的两个顶点:", k + 1);scanf_s(" %c %c", &v1, sizeof(VerTexType), &v2, sizeof(VerTexType));printf("请输入第%d条边的权值:", k + 1);scanf_s(" %d", &w);i = LocateVex(G, v1);j = LocateVex(G, v2);G.arcs[i][j] = w;}
}int LocateVex(AMGraph G, VerTexType v)
{int i = 0;for (i = 0; i < G.vexnum && (G.vexs[i] != v); i++){;}return i;
}void printAMGraph(AMGraph G)
{int i = 0;int j = 0;printf("各顶点值为:");for (i = 0; i < G.vexnum; i++){printf("%c ", G.vexs[i]);}printf("\n邻接矩阵为:\n");for (i = 0; i < G.vexnum; i++){for (j = 0; j < G.vexnum; j++){if (G.arcs[i][j] == MaxInt){printf("%d   ", G.arcs[i][j]);}else if (G.arcs[i][j] > 9){printf("%d      ", G.arcs[i][j]);}else{printf("%d       ", G.arcs[i][j]);}}printf("\n");}
}//用Floyd算法求有向网G中各对顶点i和j之间的最短路径
void ShortestPath_Floyd(AMGraph G)
{int i = 0;int j = 0;int k = 0;for (i = 0; i < G.vexnum; i++){for (j = 0; j < G.vexnum; j++){D[i][j] = G.arcs[i][j];if (D[i][j] < MaxInt && D[i][j] != 0){Path[i][j] = i;}else{Path[i][j] = -1;}}}for (k = 0; k < G.vexnum; k++){for (i = 0; i < G.vexnum; i++){for (j = 0; j < G.vexnum; j++){if (D[i][k] + D[k][j] < D[i][j]){D[i][j] = D[i][k] + D[k][j];Path[i][j] = Path[k][j];}}}}
}//递归打印G中从下标为i的顶点,到下标为j的顶点的最短路径
void find(AMGraph G, int i, int	j)
{if (i == j){printf("%c ", G.vexs[i]);return;}else{find(G, i, Path[i][j]);  //不断取从序号为i的顶点到序号为j的顶点最短路径上,序号为j的顶点的直接前驱顶点的序号printf(" -> %c", G.vexs[j]); //并且打印该序号对应的顶点值}
}void printPath(AMGraph G)
{int i = 0;int j = 0;int max = 0;int maxVex = 0;for (i = 0; i < G.vexnum; i++){max = 0;maxVex = 0;for (j = 0; j < G.vexnum; j++){if (j != i){if (Path[i][j] == -1){printf("\n从第%d个顶点%c到第%d个顶点%c不存在最短路径。", i + 1, G.vexs[i], j + 1, G.vexs[j]);}else{printf("\n从第%d个顶点%c到第%d个顶点%c的最短路径为:", i + 1, G.vexs[i], j + 1, G.vexs[j]);find(G, i, j);printf(" ,其长度为:%d", D[i][j]);if (D[i][j] != MaxInt && D[i][j] > max){max = D[i][j];maxVex = j;}}}}if (max != 0){printf("\n距离顶点%c的最短路径长度最大的一个顶点是:%c,其最短路径长度为:%d\n ", G.vexs[i], G.vexs[maxVex], max);}}
}

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

习题4 (存在时如何输出路径?)

试基于图的深度优先搜索策略写一算法,判别以邻接表方式存储的有向图中是否存在由顶点Vi到顶点Vj的路径(i≠j)。

#include <stdio.h>
#include <stdlib.h>#define MVNum 100bool visited[MVNum];
//标记某个顶点是否被访问过。数组中初值均为 "false",如果被访问过,则置其相应的分量为 "true"bool visited_findPath[MVNum];typedef int OtherInfo;   //假设在边结点中的数据域存储边的权值,且边的权值类型为整型
typedef char VerTexType;  //假设顶点的数据类型为字符型typedef struct ArcNode
{int adjvex;struct ArcNode* nextarc;OtherInfo info;
}ArcNode;  //边结点typedef struct VNode
{VerTexType data;ArcNode* firstarc;
}VNode, AdjList[MVNum];  //表头结点typedef struct
{AdjList vertices;  //存储所有顶点int vexnum;  //顶点总数int arcnum;  //总边数
}ALGraph;  //图的信息void CreateUDG(ALGraph& G);
int LocateVex(ALGraph& G, VerTexType v);
void printALGraph(ALGraph& G);
void DFS_AL(ALGraph G, int v);
void DFSTraverse(ALGraph G);
int findPath_DFS(ALGraph G, int i, int j);int main()
{ALGraph G = { {'\0',NULL}, 0,0 };int i = 0;int j = 0;int k = 0;VerTexType v1 = '\0';VerTexType v2 = '\0';char choice = '\0';CreateUDG(G);printALGraph(G);printf("\n");DFSTraverse(G);while (1){printf("\n\n请输入要判断是否存在路径的两个顶点值:");scanf_s(" %c %c", &v1, sizeof(VerTexType), &v2, sizeof(VerTexType));i = LocateVex(G, v1);j = LocateVex(G, v2);k = findPath_DFS(G, i, j);if (k == 1){printf("\n顶点%c与%c之间存在路径。", v1,v2);}else{printf("\n顶点%c与%c之间不存在路径。", v1, v2);}//将visited_findPath数组初始化(重置visited_findPath数组)for (j = 0; j < G.vexnum; j++){visited_findPath[j] = false;}printf("\n是否继续?(y/n): ");scanf_s(" %c", &choice);  //这里的"%c"前面必须要有空格,否则输入y也会退出主函数getchar(); // 清除输入缓冲区中的换行符if (choice != 'y' && choice != 'Y')break;}return 0;
}void CreateUDG(ALGraph& G)
{int i = 0;int k = 0;VerTexType v1 = 0;VerTexType v2 = 0;int j = 0;ArcNode* p1 = NULL;ArcNode* p2 = NULL;printf("请输入无向图的总顶点数:");scanf_s(" %d", &G.vexnum);printf("请输入无向图的总边数:");scanf_s(" %d", &G.arcnum);for (i = 0; i < G.vexnum; ++i){printf("请输入第%d个顶点的值:", i + 1);scanf_s(" %c", &(G.vertices[i].data));G.vertices[i].firstarc = NULL;   //初始化}for (k = 0; k < G.arcnum; k++){printf("请输入第%d条边依附的两个顶点(用空格间隔,输入结束后按回车): ", k + 1);scanf_s(" %c %c", &v1, sizeof(VerTexType), &v2, sizeof(VerTexType));i = LocateVex(G, v1);j = LocateVex(G, v2);p1 = (ArcNode*)malloc(sizeof(ArcNode));p1->adjvex = j;p1->nextarc = G.vertices[i].firstarc;G.vertices[i].firstarc = p1;  //将新结点*p1插入顶点Vi的边表头部p2 = (ArcNode*)malloc(sizeof(ArcNode));p2->adjvex = i;p2->nextarc = G.vertices[j].firstarc;G.vertices[j].firstarc = p2;  //将与*p1对称的新的边结点*p2插入顶点Vj的边表头部}
}//在G的顶点表vexs中获取字符v的下标(数组G.vexs的下标从0开始)
int LocateVex(ALGraph& G, VerTexType v)
{int i = 0;for (i = 0; i < G.vexnum && (G.vertices[i].data != v); ++i){;}return i;
}//打印邻接表
void printALGraph(ALGraph& G)
{int i = 0;ArcNode* pMove = NULL;for (i = 0; i < G.vexnum; i++){printf("\n第%d个顶点为:%c", i + 1, G.vertices[i].data);pMove = G.vertices[i].firstarc;if (pMove){printf("\n与第%d个顶点相邻接的每个顶点在图中的位置(下标值)为:", i + 1);while (pMove){printf("%d ", pMove->adjvex);pMove = pMove->nextarc;}}else{printf("\n没有与第%d个顶点相邻接的顶点。", i + 1);}}
}//算法6.6 采用邻接表表示图的深度优先搜索遍历
void DFS_AL(ALGraph G, int v)
{printf("%c ", G.vertices[v - 1].data);visited[v - 1] = true;ArcNode* p = G.vertices[v - 1].firstarc;int w = 0;while (p != NULL){w = p->adjvex;if (!visited[w]){DFS_AL(G, w + 1);}p = p->nextarc;}
}//算法6.4 深度优先搜索遍历非连通图
void DFSTraverse(ALGraph G)
{int v = 0;for (v = 0; v < G.vexnum; ++v){visited[v] = false;}printf("\n非连通图G的深度优先搜索遍历序列为:");for (v = 0; v < G.vexnum; ++v){if (!visited[v]){DFS_AL(G, v + 1);}}
}int findPath_DFS(ALGraph G, int i, int j)
{ArcNode* p = NULL;int m = 0;if (i == j){//printf(" %c ", G.vertices[j].data);return 1;}else{//printf("%c -> ", G.vertices[i].data);visited_findPath[i] = 1;for (p = G.vertices[i].firstarc; p; p = p->nextarc){m = p->adjvex;if (!visited_findPath[m] && findPath_DFS(G, m, j)){return 1;}}//由于p为空跳出for循环时if (!p){return 0;}}
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

int findPath_DFS(ALGraph G, int i, int j)
{ArcNode* p = NULL;int m = 0;printf(" \n\nG.vertices[i].data =  G.vertices[%d].data = %c", i, G.vertices[i].data);printf(" \nG.vertices[j].data =  G.vertices[%d].data = %c\n", j, G.vertices[j].data);if (i == j){printf("\n【1】%c \n", G.vertices[j].data);return 1;}else{printf("\n【2】%c -> \n", G.vertices[i].data);visited_findPath[i] = 1;printf("\n【3】visited_findPath[i] =  visited_findPath[%d] = %d\n", i, visited_findPath[i]);for (p = G.vertices[i].firstarc; p; p = p->nextarc){printf(" \n【4】G.vertices[p->adjvex].data =  G.vertices[%d].data = %c\n", p->adjvex, G.vertices[p->adjvex].data);m = p->adjvex;printf("\n【5】m = %d\n", m);printf("\n【6】visited_findPath[m] =  visited_findPath[%d] = %d\n", m, visited_findPath[m]);if (!visited_findPath[m] && findPath_DFS(G, m, j)){return 1;}}//由于p为空跳出for循环时if (!p){return 0;}}
}

习题5(存在时如何输出路径?)

采用邻接表存储结构,编写一个算法,判别无向图中任意给定的两个顶点之间是否存在一条长度为k 的简单路径。

#include <stdio.h>
#include <stdlib.h>#define MVNum 100bool visited[MVNum];
//标记某个顶点是否被访问过。数组中初值均为 "false",如果被访问过,则置其相应的分量为 "true"bool visited_findPath[MVNum];
bool visited_PathLen[MVNum];
int path[MVNum];typedef int OtherInfo;   //假设在边结点中的数据域存储边的权值,且边的权值类型为整型
typedef char VerTexType;  //假设顶点的数据类型为字符型typedef struct ArcNode
{int adjvex;struct ArcNode* nextarc;OtherInfo info;
}ArcNode;  //边结点typedef struct VNode
{VerTexType data;ArcNode* firstarc;
}VNode, AdjList[MVNum];  //表头结点typedef struct
{AdjList vertices;  //存储所有顶点int vexnum;  //顶点总数int arcnum;  //总边数
}ALGraph;  //图的信息void CreateUDG(ALGraph& G);
int LocateVex(ALGraph& G, VerTexType v);
void printALGraph(ALGraph& G);
void DFS_AL(ALGraph G, int v);
void DFSTraverse(ALGraph G);
int findPath_DFS(ALGraph G, int i, int j);
int findPathLen(ALGraph G, int i, int j, int k);int main()
{ALGraph G = { {'\0',NULL}, 0,0 };int i = 0;int j = 0;int k = 0;int k1 = 0;VerTexType v1 = '\0';VerTexType v2 = '\0';int len = 0;int k2 = 0;char choice = '\0';CreateUDG(G);printALGraph(G);printf("\n");DFSTraverse(G);while (1){printf("\n\n请输入要判断是否存在路径的两个顶点值:");scanf_s(" %c %c", &v1, sizeof(VerTexType), &v2, sizeof(VerTexType));i = LocateVex(G, v1);j = LocateVex(G, v2);k1 = findPath_DFS(G, i, j);if (k1 == 1){printf("顶点%c与%c之间存在路径。", v1, v2);}else{printf("顶点%c与%c之间不存在路径。", v1, v2);}//将visited_findPath数组初始化(重置visited_findPath数组)for (k = 0; k < G.vexnum; k++){visited_findPath[k] = false;}if (k1 == 1){printf("\n请输入要查找的长度len :");scanf_s(" %d", &len);k2 = findPathLen(G, i, j, len);if (k2 == 1){printf("顶点%c与%c之间存在长度为%d的路径。", v1, v2, len);}else{printf("顶点%c与%c之间不存在长度为%d的路径。", v1, v2, len);}//将visited_PathLen数组初始化(重置visited_PathLen数组)for (k = 0; k < G.vexnum; k++){visited_PathLen[k] = false;}}printf("\n是否继续?(y/n): ");scanf_s(" %c", &choice);  //这里的"%c"前面必须要有空格,否则输入y也会退出主函数getchar(); // 清除输入缓冲区中的换行符if (choice != 'y' && choice != 'Y')break;}return 0;
}void CreateUDG(ALGraph& G)
{int i = 0;int k = 0;VerTexType v1 = 0;VerTexType v2 = 0;int j = 0;ArcNode* p1 = NULL;ArcNode* p2 = NULL;printf("请输入无向图的总顶点数:");scanf_s(" %d", &G.vexnum);printf("请输入无向图的总边数:");scanf_s(" %d", &G.arcnum);for (i = 0; i < G.vexnum; ++i){printf("请输入第%d个顶点的值:", i + 1);scanf_s(" %c", &(G.vertices[i].data));G.vertices[i].firstarc = NULL;   //初始化}for (k = 0; k < G.arcnum; k++){printf("请输入第%d条边依附的两个顶点(用空格间隔,输入结束后按回车): ", k + 1);scanf_s(" %c %c", &v1, sizeof(VerTexType), &v2, sizeof(VerTexType));i = LocateVex(G, v1);j = LocateVex(G, v2);p1 = (ArcNode*)malloc(sizeof(ArcNode));p1->adjvex = j;p1->nextarc = G.vertices[i].firstarc;G.vertices[i].firstarc = p1;  //将新结点*p1插入顶点Vi的边表头部p2 = (ArcNode*)malloc(sizeof(ArcNode));p2->adjvex = i;p2->nextarc = G.vertices[j].firstarc;G.vertices[j].firstarc = p2;  //将与*p1对称的新的边结点*p2插入顶点Vj的边表头部}
}//在G的顶点表vexs中获取字符v的下标(数组G.vexs的下标从0开始)
int LocateVex(ALGraph& G, VerTexType v)
{int i = 0;for (i = 0; i < G.vexnum && (G.vertices[i].data != v); ++i){;}return i;
}//打印邻接表
void printALGraph(ALGraph& G)
{int i = 0;ArcNode* pMove = NULL;for (i = 0; i < G.vexnum; i++){printf("\n第%d个顶点为:%c", i + 1, G.vertices[i].data);pMove = G.vertices[i].firstarc;if (pMove){printf("\n与第%d个顶点相邻接的每个顶点在图中的位置(下标值)为:", i + 1);while (pMove){printf("%d ", pMove->adjvex);pMove = pMove->nextarc;}}else{printf("\n没有与第%d个顶点相邻接的顶点。", i + 1);}}
}//算法6.6 采用邻接表表示图的深度优先搜索遍历
void DFS_AL(ALGraph G, int v)
{printf("%c ", G.vertices[v - 1].data);visited[v - 1] = true;ArcNode* p = G.vertices[v - 1].firstarc;int w = 0;while (p != NULL){w = p->adjvex;if (!visited[w]){DFS_AL(G, w + 1);}p = p->nextarc;}
}//算法6.4 深度优先搜索遍历非连通图
void DFSTraverse(ALGraph G)
{int v = 0;for (v = 0; v < G.vexnum; ++v){visited[v] = false;}printf("\n非连通图G的深度优先搜索遍历序列为:");for (v = 0; v < G.vexnum; ++v){if (!visited[v]){DFS_AL(G, v + 1);}}
}int findPath_DFS(ALGraph G, int i, int j)
{ArcNode* p = NULL;int m = 0;if (i == j){//printf(" %c ", G.vertices[j].data);return 1;}else{//printf("%c -> ", G.vertices[i].data);visited_findPath[i] = 1;for (p = G.vertices[i].firstarc; p; p = p->nextarc){m = p->adjvex;if (!visited_findPath[m] && findPath_DFS(G, m, j)){return 1;}}//由于p为空跳出for循环时if (!p){return 0;}}
}int findPathLen(ALGraph G, int i, int j, int k)
{ArcNode* p = NULL;int m = 0;if (i == j && k == 1){return 1;}else{visited_PathLen[i] = 1;for (p = G.vertices[i].firstarc; p; p = p->nextarc){m = p->adjvex;if (!visited_PathLen[m] && findPathLen(G, m, j, k - 1)){return 1;}}visited_PathLen[i] = 0;//由于p为空跳出for循环时if (!p){return 0;}}
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

int findPathLen(ALGraph G, int i, int j, int k)
{ArcNode* p = NULL;int m = 0;printf(" \n\nG.vertices[i].data =  G.vertices[%d].data = %c", i, G.vertices[i].data);printf(" \nG.vertices[j].data =  G.vertices[%d].data = %c\n", j, G.vertices[j].data);if (i == j && k == 1){printf("\n【1】%c \n", G.vertices[j].data);return 1;}else{printf("\n【2】%c -> \n", G.vertices[i].data);visited_PathLen[i] = 1;printf("\n【3】visited_PathLen[i] =  visited_PathLen[%d] = %d\n", i, visited_PathLen[i]);for (p = G.vertices[i].firstarc; p; p = p->nextarc){printf("\n【4】G.vertices[p->adjvex].data =  G.vertices[%d].data = %c\n", p->adjvex, G.vertices[p->adjvex].data);m = p->adjvex;printf("\n【5】m = %d\n", m);printf("\n【6】visited_PathLen[m] =  visited_PathLen[%d] = %d\n", m, visited_PathLen[m]);if (!visited_PathLen[m] && findPathLen(G, m, j, k - 1)){return 1;}}printf("\n【7】visited_PathLen[i] =  visited_PathLen[%d] = %d\n", i, visited_PathLen[i]);visited_PathLen[i] = 0;printf("\n【8】visited_PathLen[i] =  visited_PathLen[%d] = %d\n", i, visited_PathLen[i]);}//由于p为空跳出for循环时if (!p){return 0;}
}

这篇关于《数据结构(C语言版)第二版》第六章-图(算法设计题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108620

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费