使用miniconda构建数据科学环境

2024-08-25 23:52

本文主要是介绍使用miniconda构建数据科学环境,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

数据科学中,不同时期项目代码往往是由不同的版本的python和第三方数据科学包构建,这些不同版本往往会存在兼容性问题,要运行这些代码,需要管理不同的版本的安装包。Conda是一个开源的包管理和环境管理系统,环境管理允许用户创建不同的独立的虚拟环境,可以在其中安装不同版本的python和包,而且支持方便快速地切换虚拟环境

anaconda和miniconda都集成了conda,二者的区别是anaconda预安装了300多个常用的数据科学包,安装包非常大(安装需要4~5G空间),有图形化界面,比较适合新手使用;而miniconda只包含python和一些核心的安装包(大约70个),安装包比较小(安装只需要500M空间),可以后期根据自己的需要进行数据科学包的安装,适合有经验的同学。

卸载Anaconda

anaconda的第三方包可能依赖不同版本的其他包和gcc,使用时间长了容易出现依赖版本混乱的情况,造成运行错误。需要卸载干净,以免重新安装后还有问题。

这里可以使用官方建议的卸载方法。

Uninstalling Anaconda Distribution — Anaconda documentation

  1. 打开您的终端应用程序。

  2. (可选)通过运行以下命令从所有终端 shell 配置文件中删除任何 conda 初始化脚本:

    conda activate
    conda init --reverse --all
  3. 使用rm -rf删除整个anaconda3目录。根据您的安装,此目录将位于您的根文件夹或 opt 文件夹中。查看下安装位置(mac上搜索anaconda)然后进行删除。

  4. Note 笔记
    要卸载 Miniconda,请将anaconda3替换为miniconda3 # The following are a few examples of how you
    # may need to delete your Anaconda folder
    rm -rf anaconda3
    rm -rf ~/anaconda3
    sudo rm -rf /opt/anaconda3 # 部分文件删除不掉时使用
  5. (可选)如果您在anaconda3目录之外创建了任何环境,您可以手动删除它们以增加计算机上的可用磁盘空间。

  6. 关闭并重新打开终端以刷新它,您不应再在终端提示符中看到(base) 。

安装Miniconda

1. 对mac用户,最简单的安装方式是通过package(后缀名为.pkg)进行安装,先下载需要的安装包,这里主要是M1芯片还是intel x86芯片。

安装包:

Latest Miniconda installer links by Python version — Anaconda documentation

2. 双击安装即可

3. 安装完成之后,验证按章是否成功

conda -V

conda 24.7.1 

更换国内数据源

在国内使用官方镜像进行安装会很慢,因此建议切换为国内的镜像源。

第一次运行,缺失.condarc,运行一下面这条命令,用户目录下就会多一个.condarc的配置文件

conda config --set show_channel_urls yes# 换其国内镜像源,以清华镜像为例
vim ~/.condarc# Vim的使用方法,运行上述命令后,按“i”键进入“INSERT”模式(最后一行会显示“INSERT”),
# 然后编辑condarc中的内容,编辑完成后,按“ESC”键退出编辑模式,然后按“Shifit+:”,最后一行显示“:”时,输入wq(保存退出)

将condarc配置文件内容修改为如下

channels:- defaults
show_channel_urls: true
default_channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
custom_channels:conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmsys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudbioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmenpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudsimpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

 参考:https://www.cnblogs.com/Oraer/p/17431614.html

国内其他镜像源:

# 中科大镜像源
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/# 阿里镜像源
conda config --add channels https://mirrors.aliyun.com/pypi/simple/# 豆瓣的python的源
conda config --add channels http://pypi.douban.com/simple/ # 显示检索路径,每次安装包时会将包源路径显示出来
conda config --set show_channel_urls yes
conda config --set always_yes True#执行以下命令清除索引缓存,保证用的是镜像站提供的索引
conda clean -i# 显示所有镜像通道路径命令
conda config --show channels
#**如果不想进入终端默认激活base环境: **
conda config --set auto_activate_base false

安装数据包

安装数据科学包前,先初更新和始化conda,conda init 这个命令会帮忙自动配置环境变量(如 .bashrc 或 .bash_profile 等),省去手动配置的麻烦。

conda update conda
conda init

新建conda环境,可以指定python版本 

conda create -n py312 python=3.12conda activate py312conda install numpy pandas scipy matplotlib seaborn jupyter notebook jupyterlab

安装完成后,在终端中输入“jupyter notebook” ,可以测试是否成功。

至此,一个初步的数据科学工作环境就搭建完成了!

参考文章:

1. Linux安装miniconda和换镜像源:https://www.cnblogs.com/Oraer/p/17431614.html

1. Miniconda3环境配置,换国内源_miniconda换源-CSDN博客

2. https://www.cnblogs.com/catting123/p/16557462.html

3. miniconda配置手册——基本配置、初始化、管理虚拟环境、包的操作-CSDN博客

这篇关于使用miniconda构建数据科学环境的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106974

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传