TensorFlow实现Softmax回归

2024-08-25 17:28

本文主要是介绍TensorFlow实现Softmax回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

模型

相比线性回归,Softmax只多一个分类的操作,即预测结果由连续值变为离散值,为了实现这样的结果,我们可以使最后一层具有多个神经元,而输入不变,其结构如图所示:

为了实现分类,我们使用一个Softmax操作,Softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质。 为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。 为了确保最终输出的概率值总和为1,我们再让每个求幂后的结果除以它们的总和。

\hat{y}_j=\frac{exp(o_j)}{\Sigma_k exp(o_k)}

那么对于y的结果,可以采用如下的方式表示:

\hat{y}=Softmax(Wx+b)

由于softmax操作只改变大小的值,不改变大小次序,因此对输出使用Softmax操作后,仍然有

{argmax}_j \hat{y}_j={argmax}_j \hat{o}_j

损失函数

在分类问题中一般使用交叉熵损失函数,这样可以更好的使模型辨别正确的label,而不是每一个label都使用同样的权重判断损失。

结果的可视化

通过构建Animator图像化类和Accumulator累加类完成数据的可视化实现。

Animator类

class Animator:def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,figsize=(3.5, 2.5)):if legend is None:legend = []d2l.use_svg_display()self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)if nrows * ncols == 1:self.axes = [self.axes, ]self.config_axes = lambda: d2l.set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)self.X, self.Y, self.fmts = None, None, fmts

Accumulator类 

class Accumulator:def __init__(self, n):self.data = [0.0] * ndef add(self, *args):self.data = [a + float(b) for a, b in zip(self.data, args)]def reset(self):self.data = [0.0] * len(self.data)def __getitem__(self, idx):return self.data[idx]

读取数据集

为实现Softmax回归,我们首先引入相关的库并读取数据集。这里使用mnist数据集进行测试。

import tensorflow as tfbatch_size = 256
def load_data_fashion_mnist(batch_size, resize=None):mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()process = lambda X, y: (tf.expand_dims(X, axis=3) / 255,tf.cast(y, dtype='int32'))resize_fn = lambda X, y: (tf.image.resize_with_pad(X, resize, resize) if resize else X, y)return (tf.data.Dataset.from_tensor_slices(process(*mnist_train)).batch(batch_size).shuffle(len(mnist_train[0])).map(resize_fn),tf.data.Dataset.from_tensor_slices(process(*mnist_test)).batch(batch_size).map(resize_fn)) 
train_iter, test_iter = load_data_fashion_mnist(batch_size)

初始化模型参数

首先用Sequential构建一个模型容器,然后添加一个Flatten层将28x28的输入展平,然后添加一个全连接层获得输出。

net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
weight_initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.01)
net.add(tf.keras.layers.Dense(10, kernel_initializer=weight_initializer))

模型训练

首先定义一个损失函数,这里使用稀疏类别交叉熵损失函数,适应标签是整数而不是独热编码的情况,然后定义训练模型,采用小批量随机梯度下降(SGD)算法进行训练。

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
trainer = tf.keras.optimizers.SGD(learning_rate=.1)
num_epochs = 10

接下来定义模型的训练具体方式,对每一轮采用随机梯度下降的后向计算方式,进行具体的训练。其中train_epoch_ch3是在一轮中进行训练,train_ch3是整体的训练过程。

def train_epoch_ch3(net, train_iter, loss, updater):metric = Accumulator(3)for X, y in train_iter:with tf.GradientTape() as tape:y_hat = net(X)if isinstance(loss, tf.keras.losses.Loss):l = loss(y, y_hat)else:l = loss(y_hat, y)if isinstance(updater, tf.keras.optimizers.Optimizer):params = net.trainable_variablesgrads = tape.gradient(l, params)updater.apply_gradients(zip(grads, params))else:updater(X.shape[0], tape.gradient(l, updater.params))l_sum = l * float(tf.size(y)) if isinstance(loss, tf.keras.losses.Loss) else tf.reduce_sum(l)metric.add(l_sum, accuracy(y_hat, y), tf.size(y))return metric[0] / metric[2], metric[1] / metric[2]def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],legend=['train loss', 'train acc', 'test acc'])for epoch in range(num_epochs):train_metrics = train_epoch_ch3(net, train_iter, loss, updater)test_acc = evaluate_accuracy(net, test_iter)animator.add(epoch + 1, train_metrics + (test_acc,))train_loss, train_acc = train_metricsassert train_loss < 0.5, train_lossassert train_acc <= 1 and train_acc > 0.7, train_accassert test_acc <= 1 and test_acc > 0.7, test_acc

最后调用函数直接进行训练,需要注意的是,不必调用train_epoch_ch3函数,他在训练过程中是自动调用的。

train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

训练结果

在刚刚的训练过程中我们使用了animator和accumulator来可视化训练结果,因此训练结果较为直观,如图所示:

这篇关于TensorFlow实现Softmax回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106186

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2