TensorFlow实现Softmax回归

2024-08-25 17:28

本文主要是介绍TensorFlow实现Softmax回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

模型

相比线性回归,Softmax只多一个分类的操作,即预测结果由连续值变为离散值,为了实现这样的结果,我们可以使最后一层具有多个神经元,而输入不变,其结构如图所示:

为了实现分类,我们使用一个Softmax操作,Softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质。 为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。 为了确保最终输出的概率值总和为1,我们再让每个求幂后的结果除以它们的总和。

\hat{y}_j=\frac{exp(o_j)}{\Sigma_k exp(o_k)}

那么对于y的结果,可以采用如下的方式表示:

\hat{y}=Softmax(Wx+b)

由于softmax操作只改变大小的值,不改变大小次序,因此对输出使用Softmax操作后,仍然有

{argmax}_j \hat{y}_j={argmax}_j \hat{o}_j

损失函数

在分类问题中一般使用交叉熵损失函数,这样可以更好的使模型辨别正确的label,而不是每一个label都使用同样的权重判断损失。

结果的可视化

通过构建Animator图像化类和Accumulator累加类完成数据的可视化实现。

Animator类

class Animator:def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,figsize=(3.5, 2.5)):if legend is None:legend = []d2l.use_svg_display()self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)if nrows * ncols == 1:self.axes = [self.axes, ]self.config_axes = lambda: d2l.set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)self.X, self.Y, self.fmts = None, None, fmts

Accumulator类 

class Accumulator:def __init__(self, n):self.data = [0.0] * ndef add(self, *args):self.data = [a + float(b) for a, b in zip(self.data, args)]def reset(self):self.data = [0.0] * len(self.data)def __getitem__(self, idx):return self.data[idx]

读取数据集

为实现Softmax回归,我们首先引入相关的库并读取数据集。这里使用mnist数据集进行测试。

import tensorflow as tfbatch_size = 256
def load_data_fashion_mnist(batch_size, resize=None):mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()process = lambda X, y: (tf.expand_dims(X, axis=3) / 255,tf.cast(y, dtype='int32'))resize_fn = lambda X, y: (tf.image.resize_with_pad(X, resize, resize) if resize else X, y)return (tf.data.Dataset.from_tensor_slices(process(*mnist_train)).batch(batch_size).shuffle(len(mnist_train[0])).map(resize_fn),tf.data.Dataset.from_tensor_slices(process(*mnist_test)).batch(batch_size).map(resize_fn)) 
train_iter, test_iter = load_data_fashion_mnist(batch_size)

初始化模型参数

首先用Sequential构建一个模型容器,然后添加一个Flatten层将28x28的输入展平,然后添加一个全连接层获得输出。

net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
weight_initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.01)
net.add(tf.keras.layers.Dense(10, kernel_initializer=weight_initializer))

模型训练

首先定义一个损失函数,这里使用稀疏类别交叉熵损失函数,适应标签是整数而不是独热编码的情况,然后定义训练模型,采用小批量随机梯度下降(SGD)算法进行训练。

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
trainer = tf.keras.optimizers.SGD(learning_rate=.1)
num_epochs = 10

接下来定义模型的训练具体方式,对每一轮采用随机梯度下降的后向计算方式,进行具体的训练。其中train_epoch_ch3是在一轮中进行训练,train_ch3是整体的训练过程。

def train_epoch_ch3(net, train_iter, loss, updater):metric = Accumulator(3)for X, y in train_iter:with tf.GradientTape() as tape:y_hat = net(X)if isinstance(loss, tf.keras.losses.Loss):l = loss(y, y_hat)else:l = loss(y_hat, y)if isinstance(updater, tf.keras.optimizers.Optimizer):params = net.trainable_variablesgrads = tape.gradient(l, params)updater.apply_gradients(zip(grads, params))else:updater(X.shape[0], tape.gradient(l, updater.params))l_sum = l * float(tf.size(y)) if isinstance(loss, tf.keras.losses.Loss) else tf.reduce_sum(l)metric.add(l_sum, accuracy(y_hat, y), tf.size(y))return metric[0] / metric[2], metric[1] / metric[2]def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],legend=['train loss', 'train acc', 'test acc'])for epoch in range(num_epochs):train_metrics = train_epoch_ch3(net, train_iter, loss, updater)test_acc = evaluate_accuracy(net, test_iter)animator.add(epoch + 1, train_metrics + (test_acc,))train_loss, train_acc = train_metricsassert train_loss < 0.5, train_lossassert train_acc <= 1 and train_acc > 0.7, train_accassert test_acc <= 1 and test_acc > 0.7, test_acc

最后调用函数直接进行训练,需要注意的是,不必调用train_epoch_ch3函数,他在训练过程中是自动调用的。

train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

训练结果

在刚刚的训练过程中我们使用了animator和accumulator来可视化训练结果,因此训练结果较为直观,如图所示:

这篇关于TensorFlow实现Softmax回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106186

相关文章

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的