TensorFlow实现Softmax回归

2024-08-25 17:28

本文主要是介绍TensorFlow实现Softmax回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

模型

相比线性回归,Softmax只多一个分类的操作,即预测结果由连续值变为离散值,为了实现这样的结果,我们可以使最后一层具有多个神经元,而输入不变,其结构如图所示:

为了实现分类,我们使用一个Softmax操作,Softmax函数能够将未规范化的预测变换为非负数并且总和为1,同时让模型保持可导的性质。 为了完成这一目标,我们首先对每个未规范化的预测求幂,这样可以确保输出非负。 为了确保最终输出的概率值总和为1,我们再让每个求幂后的结果除以它们的总和。

\hat{y}_j=\frac{exp(o_j)}{\Sigma_k exp(o_k)}

那么对于y的结果,可以采用如下的方式表示:

\hat{y}=Softmax(Wx+b)

由于softmax操作只改变大小的值,不改变大小次序,因此对输出使用Softmax操作后,仍然有

{argmax}_j \hat{y}_j={argmax}_j \hat{o}_j

损失函数

在分类问题中一般使用交叉熵损失函数,这样可以更好的使模型辨别正确的label,而不是每一个label都使用同样的权重判断损失。

结果的可视化

通过构建Animator图像化类和Accumulator累加类完成数据的可视化实现。

Animator类

class Animator:def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,ylim=None, xscale='linear', yscale='linear',fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,figsize=(3.5, 2.5)):if legend is None:legend = []d2l.use_svg_display()self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)if nrows * ncols == 1:self.axes = [self.axes, ]self.config_axes = lambda: d2l.set_axes(self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)self.X, self.Y, self.fmts = None, None, fmts

Accumulator类 

class Accumulator:def __init__(self, n):self.data = [0.0] * ndef add(self, *args):self.data = [a + float(b) for a, b in zip(self.data, args)]def reset(self):self.data = [0.0] * len(self.data)def __getitem__(self, idx):return self.data[idx]

读取数据集

为实现Softmax回归,我们首先引入相关的库并读取数据集。这里使用mnist数据集进行测试。

import tensorflow as tfbatch_size = 256
def load_data_fashion_mnist(batch_size, resize=None):mnist_train, mnist_test = tf.keras.datasets.fashion_mnist.load_data()process = lambda X, y: (tf.expand_dims(X, axis=3) / 255,tf.cast(y, dtype='int32'))resize_fn = lambda X, y: (tf.image.resize_with_pad(X, resize, resize) if resize else X, y)return (tf.data.Dataset.from_tensor_slices(process(*mnist_train)).batch(batch_size).shuffle(len(mnist_train[0])).map(resize_fn),tf.data.Dataset.from_tensor_slices(process(*mnist_test)).batch(batch_size).map(resize_fn)) 
train_iter, test_iter = load_data_fashion_mnist(batch_size)

初始化模型参数

首先用Sequential构建一个模型容器,然后添加一个Flatten层将28x28的输入展平,然后添加一个全连接层获得输出。

net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Flatten(input_shape=(28, 28)))
weight_initializer = tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.01)
net.add(tf.keras.layers.Dense(10, kernel_initializer=weight_initializer))

模型训练

首先定义一个损失函数,这里使用稀疏类别交叉熵损失函数,适应标签是整数而不是独热编码的情况,然后定义训练模型,采用小批量随机梯度下降(SGD)算法进行训练。

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
trainer = tf.keras.optimizers.SGD(learning_rate=.1)
num_epochs = 10

接下来定义模型的训练具体方式,对每一轮采用随机梯度下降的后向计算方式,进行具体的训练。其中train_epoch_ch3是在一轮中进行训练,train_ch3是整体的训练过程。

def train_epoch_ch3(net, train_iter, loss, updater):metric = Accumulator(3)for X, y in train_iter:with tf.GradientTape() as tape:y_hat = net(X)if isinstance(loss, tf.keras.losses.Loss):l = loss(y, y_hat)else:l = loss(y_hat, y)if isinstance(updater, tf.keras.optimizers.Optimizer):params = net.trainable_variablesgrads = tape.gradient(l, params)updater.apply_gradients(zip(grads, params))else:updater(X.shape[0], tape.gradient(l, updater.params))l_sum = l * float(tf.size(y)) if isinstance(loss, tf.keras.losses.Loss) else tf.reduce_sum(l)metric.add(l_sum, accuracy(y_hat, y), tf.size(y))return metric[0] / metric[2], metric[1] / metric[2]def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],legend=['train loss', 'train acc', 'test acc'])for epoch in range(num_epochs):train_metrics = train_epoch_ch3(net, train_iter, loss, updater)test_acc = evaluate_accuracy(net, test_iter)animator.add(epoch + 1, train_metrics + (test_acc,))train_loss, train_acc = train_metricsassert train_loss < 0.5, train_lossassert train_acc <= 1 and train_acc > 0.7, train_accassert test_acc <= 1 and test_acc > 0.7, test_acc

最后调用函数直接进行训练,需要注意的是,不必调用train_epoch_ch3函数,他在训练过程中是自动调用的。

train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

训练结果

在刚刚的训练过程中我们使用了animator和accumulator来可视化训练结果,因此训练结果较为直观,如图所示:

这篇关于TensorFlow实现Softmax回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106186

相关文章

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

Golang如何用gorm实现分页的功能

《Golang如何用gorm实现分页的功能》:本文主要介绍Golang如何用gorm实现分页的功能方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景go库下载初始化数据【1】建表【2】插入数据【3】查看数据4、代码示例【1】gorm结构体定义【2】分页结构体