【数据分享】全球含建筑高度的建筑物数据(shp格式\约15亿栋建筑物)

2024-08-25 11:52

本文主要是介绍【数据分享】全球含建筑高度的建筑物数据(shp格式\约15亿栋建筑物),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

建筑数据是我们在各项研究中经常使用到的数据。之前我们能获取到的建筑数据大多没有建筑高度信息,而建筑高度是建筑数据最重要的属性。之前我们给大家分享了我国分城市的含建筑高度的建筑物数据(可查看之前的文章获悉详情),本次我们继续给大家分享全球含建筑高度的建筑物数据。

该数据格式为shp矢量格式。数据坐标为WGS1984坐标。数据发布时间是2024年5月。数据本身的日期为2020年。数据发布于Zenodo数据库。与数据配套的论文为《3D-GloBFP: the first global three-dimensional building footprint dataset》。

大家在公众号回复关键词 315 按照转发要求获取数据!以下为数据的详细介绍:

01 数据预览

我们以中国上海市的数据为例来预览一下,首先我们看一看二维建筑轮廓数据:

上海市建筑轮廓数据

下图为数据属性表的预览,表中“Height”为建筑高度数据,数据单位为米。

然后我们来看一看拉伸建筑高度后的三维数据:

上海市主城区建筑三维数据

02 数据详情

数据简介:

该数据包括建筑轮廓矢量建筑高度信息。研究者首先收集到建筑轮廓矢量数据、多源遥感数据 和可获得的建筑高度数据。通过已知建筑高度数据和多源遥感数据训练模型,进而估计得到2020年的建筑高度数据。

建筑轮廓矢量来源于微软建筑物轮廓数据集(Microsoft, 2018)和 Shi 等人(2024)提供的建筑边界数据集。微软建筑物数据集提供了大约 2020 年全球的 13 亿个建筑物轮廓。东亚的一些地区(如中国、朝鲜和韩国)未包含在微软建筑物轮廓数据集中,研究者使用了 Shi 等人(2024)基于2020-2022年谷歌影像使用深度学习方法提取的建筑物轮廓作为替代。

建筑高度信息为研究者通过集成多源遥感特征(SAR 图像、光学图像、地形图像以及反映人口和社会经济活动的图像)和建筑物形态特征,借助 GEE 平台从多源数据集(即雷达、光学、地形、社会经济和矢量)中提取175个模型的输入特征,使用XGBoost机器学习回归方法来估算2020年的建筑物高度。其中遥感影像采用2020年的数据,图像缺失的区域用2019年和 2021年的数据补充。

另外,作为训练数据集的全球已知建筑高度数据来自于ONEGEO Map (https://onegeo.co/data/)、微软建筑物足迹 (Microsoft,2018)、百度地图(https://map.baidu.com/)和 EMU Analytics (https://www.emu-analytics.com/)。

数据详情:

数据来源:Zenodo数据库

https://zenodo.org/records/11397015(亚洲)

https://zenodo.org/records/11391077(欧洲)

https://zenodo.org/records/11319913(美洲、非洲和大洋洲)

数据格式:

Shp

空间范围:

全球(亚洲、欧洲、美洲和大洋洲)

地理坐标系:

WGS 1984

数据大小:

解压后数据大小为88.4GB

数据引用:

欧洲数据的引用:

Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Yuan, H., & Dai, Y. (2024). Building height of Europe in 3D-GloBFP [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11391077

亚洲数据的引用:

Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Yuan, H., & Dai, Y. (2024). Building height of Asia in 3D-GloBFP [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11397015

美洲、非洲和大洋洲数据的引用:

Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Yuan, H., & Dai, Y. (2024). Building height of the Americas, Africa, and Oceania in 3D-GloBFP [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11319913

论文引用:

Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Yuan, H., and Dai, Y.: 3D-GloBFP: the first global three-dimensional building footprint dataset, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-217, in review, 2024.

03 数据获取

如需获取数据,请关注下方公众号~

这篇关于【数据分享】全球含建筑高度的建筑物数据(shp格式\约15亿栋建筑物)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1105488

相关文章

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.

java获取图片的大小、宽度、高度方式

《java获取图片的大小、宽度、高度方式》文章介绍了如何将File对象转换为MultipartFile对象的过程,并分享了个人经验,希望能为读者提供参考... 目China编程录Java获取图片的大小、宽度、高度File对象(该对象里面是图片)MultipartFile对象(该对象里面是图片)总结java获取图片

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt