01背包,完全背包,多重背包详解

2024-08-25 08:18
文章标签 详解 01 背包 完全 多重

本文主要是介绍01背包,完全背包,多重背包详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背包之01背包、完全背包、多重背包详解

 

PS:大家觉得写得还过得去,就帮我把博客顶一下,谢谢。

首先说下动态规划,动态规划这东西就和递归一样,只能找局部关系,若想全部列出来,是很难的,比如汉诺塔。你可以说先把除最后一层的其他所有层都移动到2,再把最后一层移动到3,最后再把其余的从2移动到3,这是一个直观的关系,但是想列举出来是很难的,也许当层数n=3时还可以模拟下,再大一些就不可能了,所以,诸如递归,动态规划之类的,不能细想,只能找局部关系。

 

 

 

1.汉诺塔图片

(引至杭电课件:DP最关键的就是状态,在DP时用到的数组时,也就是存储的每个状态的最优值,也就是记忆化搜索)

要了解背包,首先得清楚动态规划:

动态规划算法可分解成从先到后的4个步骤:

1. 描述一个最优解的结构;

2. 递归地定义最优解的值;

3. 以“自底向上”的方式计算最优解的值;

4. 从已计算的信息中构建出最优解的路径。

其中步骤1~3是动态规划求解问题的基础。如果题目只要求最优解的值,则步骤4可以省略。

背包的基本模型就是给你一个容量为V的背包

在一定的限制条件下放进最多(最少?)价值的东西

当前状态→ 以前状态

看了dd大牛的《背包九讲》(点击下载),迷糊中带着一丝清醒,这里我也总结下01背包,完全背包,多重背包这三者的使用和区别,部分会引用dd大牛的《背包九讲》,如果有错,欢迎指出。

(www.wutianqi.com留言即可)

首先我们把三种情况放在一起来看:

01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

比较三个题目,会发现不同点在于每种背包的数量,01背包是每种只有一件,完全背包是每种无限件,而多重背包是每种有限件。

——————————————————————————————————————————————————————————–

先来分析01背包

01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

把这个过程理解下:在前i件物品放进容量v的背包时,

它有两种情况:

第一种是第i件不放进去,这时所得价值为:f[i-1][v]

第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i]

(第二种是什么意思?就是如果第i件放进去,那么在容量v-c[i]里就要放进前i-1件物品)

最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。

(这是基础,要理解!)

这里是用二位数组存储的,可以把空间优化,用一位数组存储。

用f[0..v]表示,f[v]表示把前i件物品放入容量为v的背包里得到的价值。把i从1~n(n件)循环后,最后f[v]表示所求最大值。

*这里f[v]就相当于二位数组的f[i][v]。那么,如何得到f[i-1][v]和f[i-1][v-c[i]]+w[i]?(重点!思考)
首先要知道,我们是通过i从1到n的循环来依次表示前i件物品存入的状态。即:for i=1..N
现在思考如何能在是f[v]表示当前状态是容量为v的背包所得价值,而又使f[v]和f[v-c[i]]+w[i]标签前一状态的价值?

逆序!

这就是关键!

 

1
2
3
for i=1..N
    for v=V..0
         f[v]=max{f[v],f[v-c[i]]+w[i]};

 

 

 

分析上面的代码:当内循环是逆序时,就可以保证后一个f[v]和f[v-c[i]]+w[i]是前一状态的!
这里给大家一组测试数据:

测试数据:
10,3
3,4
4,5
5,6

 

 

 

这个图表画得很好,借此来分析:

C[v]从物品i=1开始,循环到物品3,期间,每次逆序得到容量v在前i件物品时可以得到的最大值。(请在草稿纸上自己画一画

这里以一道题目来具体看看:

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2602

代码在这里:http://www.wutianqi.com/?p=533

分析:

 

 

 

具体根据上面的解释以及我给出的代码分析。这题很基础,看懂上面的知识应该就会做了。

——————————————————————————————————————————————————————————–

完全背包:

完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

完全背包按其思路仍然可以用一个二维数组来写出:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}

同样可以转换成一维数组来表示:

伪代码如下:

 

1
2
3
for i=1..N
     for v=0..V
         f[v]=max{f[v],f[v-c[i]]+w[i]}

 

 

 

 

 

顺序!

想必大家看出了和01背包的区别,这里的内循环是顺序的,而01背包是逆序的。
现在关键的是考虑:为何完全背包可以这么写?
在次我们先来回忆下,01背包逆序的原因?是为了是max中的两项是前一状态值,这就对了。
那么这里,我们顺序写,这里的max中的两项当然就是当前状态的值了,为何?
因为每种背包都是无限的。当我们把i从1到N循环时,f[v]表示容量为v在前i种背包时所得的价值,这里我们要添加的不是前一个背包,而是当前背包。所以我们要考虑的当然是当前状态。
这里同样给大家一道题目:

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1114

代码:http://www.wutianqi.com/?p=535

(分析代码也是学习算法的一种途径,有时并不一定要看算法分析,结合题目反而更容易理解。)

——————————————————————————————————————————————————————————–

多重背包

多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}

这里同样转换为01背包:

普通的转换对于数量较多时,则可能会超时,可以转换成二进制(暂时不了解,所以先不讲)

对于普通的。就是多了一个中间的循环,把j=0~bag[i],表示把第i中背包从取0件枚举到取bag[i]件。

给出一个例题:

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2191

代码:http://www.wutianqi.com/?p=537


转至:http://www.wutianqi.com/?p=539

这篇关于01背包,完全背包,多重背包详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1105020

相关文章

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

Java使用ANTLR4对Lua脚本语法校验详解

《Java使用ANTLR4对Lua脚本语法校验详解》ANTLR是一个强大的解析器生成器,用于读取、处理、执行或翻译结构化文本或二进制文件,下面就跟随小编一起看看Java如何使用ANTLR4对Lua脚本... 目录什么是ANTLR?第一个例子ANTLR4 的工作流程Lua脚本语法校验准备一个Lua Gramm

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

前端CSS Grid 布局示例详解

《前端CSSGrid布局示例详解》CSSGrid是一种二维布局系统,可以同时控制行和列,相比Flex(一维布局),更适合用在整体页面布局或复杂模块结构中,:本文主要介绍前端CSSGri... 目录css Grid 布局详解(通俗易懂版)一、概述二、基础概念三、创建 Grid 容器四、定义网格行和列五、设置行

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空