一文让你记住Pyspark下DataFrame的7种的Join 效果

2024-08-25 07:08

本文主要是介绍一文让你记住Pyspark下DataFrame的7种的Join 效果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近看到了一片好文,虽然很简单,但是配上的插图可以让人很好的记住Pyspark 中的多种Join 类型和实际的效果。原英文链接 Introduction to Pyspark join types - Blog | luminousmen 。

假设使用如下的两个DataFrame 来进行展示

heroes_data = [('Deadpool', 3), ('Iron man', 1),('Groot', 7),
]
race_data = [('Kryptonian', 5), ('Mutant', 3), ('Human', 1), 
]
heroes = spark.createDataFrame(heroes_data, ['name', 'id'])
races = spark.createDataFrame(race_data, ['race', 'id'])

实际的上的数据展示效果如下:

+--------+---+           +----------+---+
|    name| id|           |      race| id|
+--------+---+           +----------+---+
|Deadpool|  3|           |Kryptonian|  5|
|Iron man|  1|           |    Mutant|  3|
|   Groot|  7|           |     Human|  1|
+--------+---+           +----------+---+

下面的展示图片中,其中相同的颜色表示的是能够Join匹配上的数据。下面的Join都是通过ID的方式来进行关联。

下面除了 Cross Join 之间,其它的都是通过如下说明

heroes.join(races, on='id', how='left').show()

说明在不同的 Join 的方式下不同效果。

Cross join 笛卡尔积

这个比较好理解,就是heroes表的数据和races表的数据进行Join,就是将heroes表的每一行数据都同races表的每一行数据进行联合。数据的数量级就是 m*n。不考虑Join的主键。

>>> heroes.crossJoin(races).show()
+--------+---+----------+---+  
|    name| id|      race| id|
+--------+---+----------+---+
|Deadpool|  3|Kryptonian|  5|
|Deadpool|  3|    Mutant|  3|
|Deadpool|  3|     Human|  1|
|Iron man|  1|Kryptonian|  5|
|Iron man|  1|    Mutant|  3|
|Iron man|  1|     Human|  1|
|   Groot|  7|Kryptonian|  5|
|   Groot|  7|    Mutant|  3|
|   Groot|  7|     Human|  1|
+--------+---+----------+---+

Inner join 内联合

只生成同时匹配表heroes和表races的记录集

Inner join

>>> heroes.join(races, on='id', how='inner').show()
+---+--------+------+ 
| id|    name|  race|
+---+--------+------+
|  1|Iron man| Human|
|  3|Deadpool|Mutant|
+---+--------+------+

Left join / Left outer join 左外联合

leftleft outer 是一个别名的关系。生成表heroes的所有记录,包括在表races里匹配的记录。如果没有匹配的,右边将是null。就是inner Join 的结果,再加上左边的表未匹配的所有的结果。

Left join

>>> heroes.join(races, on='id', how='left').show()
>>> heroes.join(races, on='id', how='leftouter').show()
+---+--------+------+
| id|    name|  race|
+---+--------+------+
|  7|   Groot|  null|
|  1|Iron man| Human|
|  3|Deadpool|Mutant|
+---+--------+------+

Right join / Right outer join 右外联合

同上左外联合类似。

Right join

>>> heroes.join(races, on='id', how='right').show()
>>> heroes.join(races, on='id, how='rightouter').show()
+---+--------+----------+ 
| id|    name|      race|
+---+--------+----------+
|  5|    null|Kryptonian|
|  1|Iron man|     Human|
|  3|Deadpool|    Mutant|
+---+--------+----------+

Full outer join 全外联合

outer和full 也是别名关系。生成表heroes和表races里的记录全集,包括两边都匹配的记录。如果有一边没有匹配的,缺失的这一边为null。

Full outer join

>>> heroes.join(races, on='id', how='outer').show()
>>> heroes.join(races, on='id', how='full').show()
+---+--------+----------+
| id|    name|      race|
+---+--------+----------+
|  7|   Groot|      null|
|  5|    null|Kryptonian|
|  1|Iron man|     Human|
|  3|Deadpool|    Mutant|
+---+--------+----------+

Left semi-join 左半连接

可以简单的看成是,inner join 之后,只保留能够Join上的左边表数据。

Left semi-join

>>> heroes.join(races, on='id', how='leftsemi').show()
+---+--------+
| id|    name|
+---+--------+
|  1|Iron man|
|  3|Deadpool|
+---+--------+

Left anti join

看成是Left semi-join 的取反操作,将左边中,没有匹配上的数据给取出。

Left anti join

>>> heroes.join(races, on='id', how='leftanti').show()
+---+-----+
| id| name|
+---+-----+
|  7|Groot|
+---+-----+

其它的补充

在Join的过程中,左边和右边都不能为None,可以是空数据的表但是需要带Schema,且Schema中有指定的关联主键(on)。

使用Pyspark 中创建空的DataFrame

  1. 创建空Schema的空DataFrame
  2. 创建带Schema的空DataFrame
def create_empty_df_without_schema():# Create an empty RDDemp_RDD = spark.sparkContext.emptyRDD()# Create empty schemacolumns = StructType([])return spark.createDataFrame(data=emp_RDD,schema=columns)def create_empty_df_with_schema():columns = StructType([StructField('name', StringType(), True),StructField('id', IntegerType(), True),])# emp_RDD = spark.sparkContext.emptyRDD()return spark.createDataFrame(data=[],schema=columns)

喜欢点个赞再走吧~

这篇关于一文让你记住Pyspark下DataFrame的7种的Join 效果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104888

相关文章

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

一文详解Java Condition的await和signal等待通知机制

《一文详解JavaCondition的await和signal等待通知机制》这篇文章主要为大家详细介绍了JavaCondition的await和signal等待通知机制的相关知识,文中的示例代码讲... 目录1. Condition的核心方法2. 使用场景与优势3. 使用流程与规范基本模板生产者-消费者示例

电脑密码怎么设置? 一文读懂电脑密码的详细指南

《电脑密码怎么设置?一文读懂电脑密码的详细指南》为了保护个人隐私和数据安全,设置电脑密码显得尤为重要,那么,如何在电脑上设置密码呢?详细请看下文介绍... 设置电脑密码是保护个人隐私、数据安全以及系统安全的重要措施,下面以Windows 11系统为例,跟大家分享一下设置电脑密码的具体办php法。Windo

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

React实现原生APP切换效果

《React实现原生APP切换效果》最近需要使用Hybrid的方式开发一个APP,交互和原生APP相似并且需要IM通信,本文给大家介绍了使用React实现原生APP切换效果,文中通过代码示例讲解的非常... 目录背景需求概览技术栈实现步骤根据 react-router-dom 文档配置好路由添加过渡动画使用

一文带你搞懂Nginx中的配置文件

《一文带你搞懂Nginx中的配置文件》Nginx(发音为“engine-x”)是一款高性能的Web服务器、反向代理服务器和负载均衡器,广泛应用于全球各类网站和应用中,下面就跟随小编一起来了解下如何... 目录摘要一、Nginx 配置文件结构概述二、全局配置(Global Configuration)1. w