Transformer模型:Position Embedding实现

2024-08-25 05:36

本文主要是介绍Transformer模型:Position Embedding实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在自然语言处理(NLP)中,Transformer 模型是一个非常重要的里程碑,它通过自注意力(self-attention)机制极大地提高了处理序列数据的能力。在 Transformer 模型中,词嵌入(Word Embedding)是输入层的关键部分,负责将离散的单词转换成连续的向量表示,以便模型能够理解和处理。然而,您提到的“Postin Embedding”可能是一个笔误,通常我们讨论的是“Position Embedding”(位置嵌入),它用于给模型提供单词在句子中的位置信息,因为 Transformer 模型本身是位置无关的。

以下是一个基于 PyTorch 的简单 Transformer 模型实现,包括词嵌入和位置嵌入的详细代码示例。这个示例将展示如何构建 Transformer 的一个基本层(包括多头自注意力机制和前馈网络),并加入位置嵌入。

import torch  
import torch.nn as nn  
import torch.nn.functional as F  class PositionalEncoding(nn.Module):  def __init__(self, d_model, max_len=5000):  super(PositionalEncoding, self).__init__()  # 创建位置编码矩阵  pe = torch.zeros(max_len, d_model)  position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)  div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))  pe[:, 0::2] = torch.sin(position * div_term)  pe[:, 1::2] = torch.cos(position * div_term)  pe = pe.unsqueeze(0).transpose(0, 1)  self.register_buffer('pe', pe)  def forward(self, x):  # 将位置编码加到词嵌入上  return x + self.pe[:x.size(0), :]  class TransformerEncoderLayer(nn.Module):  def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):  super(TransformerEncoderLayer, self).__init__()  self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)  self.linear1 = nn.Linear(d_model, dim_feedforward)  self.dropout = nn.Dropout(dropout)  self.linear2 = nn.Linear(dim_feedforward, d_model)  self.norm1 = nn.LayerNorm(d_model)  self.norm2 = nn.LayerNorm(d_model)  self.dropout1 = nn.Dropout(dropout)  self.dropout2 = nn.Dropout(dropout)  self.activation = nn.ReLU()  def forward(self, src, src_mask=None, src_key_padding_mask=None):  src2 = self.norm1(src)  src2 = self.dropout1(src2)  src_out, attn_output_weights, attn_output_mask = self.self_attn(src2, src2, src2, attn_mask=src_mask,  key_padding_mask=src_key_padding_mask)  src = src + self.dropout2(src_out)  src2 = self.norm2(src)  src2 = self.dropout(src2)  src = self.linear2(self.dropout(self.activation(self.linear1(src2))))  src = src + src2  return src, attn_output_weights  class TransformerEncoder(nn.Module):  def __init__(self, encoder_layer, num_layers, d_model, vocab_size, max_len=5000):  super(TransformerEncoder, self).__init__()  self.layer = nn.ModuleList([encoder_layer for _ in range(num_layers)])  self.src_emb = nn.Embedding(vocab_size, d_model)  self.pos_encoder = PositionalEncoding(d_model, max_len)  def forward(self, src):  src = self.src_emb(src) * math.sqrt(self.d_model)  # scale embedding by sqrt(d_model)  src = self.pos_encoder(src)  output = src  attn = None  for encoder in self.layer:  output, attn = encoder(output)  return output, attn  # 示例参数  
vocab_size = 10000  # 假设词汇表大小为 10000  
d_model = 512        # 嵌入维度  
nhead = 8            # 多头注意力机制中的头数  
num_layers = 6       # 编码器层数  # 创建 TransformerEncoder  
encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead)  
transformer_encoder = TransformerEncoder(encoder_layer, num_layers, d_model, vocab_size)  # 示例输入(假设已经有一些经过编码的索引)  
src = torch.tensor([[1, 2, 3, 4, 5, 0, 0],  # 每个句子的索引,用 0 填充到相同长度  [6, 7, 8, 9, 10, 0, 0]], dtype=torch.long)  # 传递输入到 Transformer 编码器  
output, attn = transformer_encoder(src)  print("Encoder output shape:", output.shape)  # 应该是 [batch_size, seq_len, d_model]  
print("Attention weights shape (if you need them):", attn.shape)  # 注意 attn 可能在第一层之后才是有效的  # 注意:attn 的输出在这里可能不直接显示,因为它依赖于具体的层实现和是否传递了 mask。  
# 在实际应用中,你可能需要更复杂的逻辑来处理 mask 或直接忽略 attn 的输出。

以上代码实现了一个简单的 Transformer 编码器,包括词嵌入、位置嵌入、多头自注意力机制和前馈网络。在 TransformerEncoderLayer 类中,我们定义了一个编码器层,它包含了自注意力机制、层归一化、前馈网络以及相应的dropout层。TransformerEncoder 类则将这些层堆叠起来,并添加了词嵌入和位置嵌入。

请注意,在实际应用中,你可能需要添加一些额外的功能,比如掩码(mask)来处理填充的零或进行序列到序列的任务(例如翻译),以及添加解码器部分以构建完整的 Transformer 模型。此外,上述代码没有处理变长输入序列的掩码,这在实际应用中是很重要的,因为它可以防止模型关注到填充的零。

这篇关于Transformer模型:Position Embedding实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104684

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的