Transformer模型:Position Embedding实现

2024-08-25 05:36

本文主要是介绍Transformer模型:Position Embedding实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在自然语言处理(NLP)中,Transformer 模型是一个非常重要的里程碑,它通过自注意力(self-attention)机制极大地提高了处理序列数据的能力。在 Transformer 模型中,词嵌入(Word Embedding)是输入层的关键部分,负责将离散的单词转换成连续的向量表示,以便模型能够理解和处理。然而,您提到的“Postin Embedding”可能是一个笔误,通常我们讨论的是“Position Embedding”(位置嵌入),它用于给模型提供单词在句子中的位置信息,因为 Transformer 模型本身是位置无关的。

以下是一个基于 PyTorch 的简单 Transformer 模型实现,包括词嵌入和位置嵌入的详细代码示例。这个示例将展示如何构建 Transformer 的一个基本层(包括多头自注意力机制和前馈网络),并加入位置嵌入。

import torch  
import torch.nn as nn  
import torch.nn.functional as F  class PositionalEncoding(nn.Module):  def __init__(self, d_model, max_len=5000):  super(PositionalEncoding, self).__init__()  # 创建位置编码矩阵  pe = torch.zeros(max_len, d_model)  position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)  div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))  pe[:, 0::2] = torch.sin(position * div_term)  pe[:, 1::2] = torch.cos(position * div_term)  pe = pe.unsqueeze(0).transpose(0, 1)  self.register_buffer('pe', pe)  def forward(self, x):  # 将位置编码加到词嵌入上  return x + self.pe[:x.size(0), :]  class TransformerEncoderLayer(nn.Module):  def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1):  super(TransformerEncoderLayer, self).__init__()  self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)  self.linear1 = nn.Linear(d_model, dim_feedforward)  self.dropout = nn.Dropout(dropout)  self.linear2 = nn.Linear(dim_feedforward, d_model)  self.norm1 = nn.LayerNorm(d_model)  self.norm2 = nn.LayerNorm(d_model)  self.dropout1 = nn.Dropout(dropout)  self.dropout2 = nn.Dropout(dropout)  self.activation = nn.ReLU()  def forward(self, src, src_mask=None, src_key_padding_mask=None):  src2 = self.norm1(src)  src2 = self.dropout1(src2)  src_out, attn_output_weights, attn_output_mask = self.self_attn(src2, src2, src2, attn_mask=src_mask,  key_padding_mask=src_key_padding_mask)  src = src + self.dropout2(src_out)  src2 = self.norm2(src)  src2 = self.dropout(src2)  src = self.linear2(self.dropout(self.activation(self.linear1(src2))))  src = src + src2  return src, attn_output_weights  class TransformerEncoder(nn.Module):  def __init__(self, encoder_layer, num_layers, d_model, vocab_size, max_len=5000):  super(TransformerEncoder, self).__init__()  self.layer = nn.ModuleList([encoder_layer for _ in range(num_layers)])  self.src_emb = nn.Embedding(vocab_size, d_model)  self.pos_encoder = PositionalEncoding(d_model, max_len)  def forward(self, src):  src = self.src_emb(src) * math.sqrt(self.d_model)  # scale embedding by sqrt(d_model)  src = self.pos_encoder(src)  output = src  attn = None  for encoder in self.layer:  output, attn = encoder(output)  return output, attn  # 示例参数  
vocab_size = 10000  # 假设词汇表大小为 10000  
d_model = 512        # 嵌入维度  
nhead = 8            # 多头注意力机制中的头数  
num_layers = 6       # 编码器层数  # 创建 TransformerEncoder  
encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead)  
transformer_encoder = TransformerEncoder(encoder_layer, num_layers, d_model, vocab_size)  # 示例输入(假设已经有一些经过编码的索引)  
src = torch.tensor([[1, 2, 3, 4, 5, 0, 0],  # 每个句子的索引,用 0 填充到相同长度  [6, 7, 8, 9, 10, 0, 0]], dtype=torch.long)  # 传递输入到 Transformer 编码器  
output, attn = transformer_encoder(src)  print("Encoder output shape:", output.shape)  # 应该是 [batch_size, seq_len, d_model]  
print("Attention weights shape (if you need them):", attn.shape)  # 注意 attn 可能在第一层之后才是有效的  # 注意:attn 的输出在这里可能不直接显示,因为它依赖于具体的层实现和是否传递了 mask。  
# 在实际应用中,你可能需要更复杂的逻辑来处理 mask 或直接忽略 attn 的输出。

以上代码实现了一个简单的 Transformer 编码器,包括词嵌入、位置嵌入、多头自注意力机制和前馈网络。在 TransformerEncoderLayer 类中,我们定义了一个编码器层,它包含了自注意力机制、层归一化、前馈网络以及相应的dropout层。TransformerEncoder 类则将这些层堆叠起来,并添加了词嵌入和位置嵌入。

请注意,在实际应用中,你可能需要添加一些额外的功能,比如掩码(mask)来处理填充的零或进行序列到序列的任务(例如翻译),以及添加解码器部分以构建完整的 Transformer 模型。此外,上述代码没有处理变长输入序列的掩码,这在实际应用中是很重要的,因为它可以防止模型关注到填充的零。

这篇关于Transformer模型:Position Embedding实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104684

相关文章

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.