Pillow和OpenCV对图片进行高亮及裁剪处理

2024-08-24 22:44

本文主要是介绍Pillow和OpenCV对图片进行高亮及裁剪处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片的高亮处理可以通过对图像的像素值进行调整来实现。常见的方法有改变亮度、对比度、应用滤镜等。以下是一些使用Pillow库和OpenCV库来进行图片高亮处理的示例代码。
使用Pillow调整亮度
Pillow库提供了一个非常方便的接口ImageEnhance中的Brightness类来调整图像的亮度。

from PIL import Image, ImageEnhance# 加载图片
image_path = "path_to_your_image.jpg"  # 替换为你的图片路径
image = Image.open(image_path)# 创建亮度增强器
enhancer = ImageEnhance.Brightness(image)# 调整亮度,1表示原始亮度,小于1变暗,大于1变亮
factor = 1.5  # 将亮度增加50%
brighter_image = enhancer.enhance(factor)# 显示结果
brighter_image.show()# 可选:保存调整后的图片
brighter_image.save("brighter_image.jpg")

使用OpenCV调整亮度
用OpenCV进行高亮处理,可以通过改变图片的像素值来实现。以下示例代码展示了如何将所有像素值提高,从而使图像变亮。

import cv2
import numpy as np# 读取图片
image_path = "path_to_your_image.jpg"  # 替换为你的图片路径
image = cv2.imread(image_path)# 增加亮度
# 注意:OpenCV中图片的数据类型为numpy数组,直接相加可能会导致数据溢出
# 使用clip函数确保结果仍然位于有效范围[0, 255]
brighter_image = np.clip(image + 50, 0, 255).astype(np.uint8)# 显示结果
cv2.imshow("Brighter Image", brighter_image)
cv2.waitKey(0)  # 等待按键
cv2.destroyAllWindows()# 可选:保存调整后的图片
cv2.imwrite("brighter_image_cv2.jpg", brighter_image)

注意事项
当使用Pillow调整亮度时,enhance方法的参数factor工作在一个相对亮度的级别上,它不是直接加到像素上的值,而是一个相乘的因子。
在使用OpenCV调整亮度时,直接对像素值进行加法操作可能会导致数值溢出,使用np.clip可以确保结果在有效的范围内。
除了简单的亮度调整,Pillow和OpenCV还提供了一系列处理图像对比度、色调、饱和度等方面的工具和函数,可以通过结合使用这些工具来实现更复杂的图像增强效果。

np.clip 函数是NumPy库中的一个重要函数,用于将数组中的元素限制在一个给定的区间内。对于区间之外的元素,如果某个元素小于区间的下限,它会被设置为区间的下限值;如果某个元素大于区间的上限,它会被设置为区间的上限值。对于在这个区间内的元素,保持不变。

基本语法
np.clip(a, a_min, a_max, out=None)
a : array_like —— 输入的数组。
a_min : scalar or array_like —— 剪切区间的下限。小于此值的元素将被设为a_min,可以是标量(单个数值)或数组形式(适用于广播操作)。
a_max : scalar or array_like —— 剪切区间的上限。大于此值的元素将被设为a_max,同样可以是标量或数组形式。
out : ndarray, optional —— 用于存储输出结果的数组。如果提供,其形状必须与输入数组a相匹配。

import numpy as np
# 创建一个数组
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
# 使用np.clip函数把所有元素限制在区间[3, 7]内
clipped_arr = np.clip(arr, 3, 7)
print(clipped_arr)
# 结果
[3 3 3 4 5 6 7 7 7]

其他用途
np.clip函数在图像处理中常用来调整像素值的范围。例如,在将图像的亮度提高后,一些像素值可能超出了有效的色彩范围[0, 255]。此时,可以使用np.clip来将这些值限制在有效范围内,避免数据溢出。
在机器学习和深度学习中,np.clip也常用于梯度裁剪(gradient clipping),以防止梯度爆炸问题。
注意事项
在使用np.clip时,提供的下限a_min不应大于上限a_max,否则可能不会得到预期的结果。当处理具有特定范围要求的数据时,合理设置这两个参数至关重要。

在Python中,裁剪图片可以通过多种库来实现,例如最常用的Pillow和OpenCV。下面分别介绍如何使用这两个库来裁剪图片。
使用Pillow裁剪图片
Pillow是一个Python图像处理库,提供了许多图像处理的功能,包括裁剪。以下是使用Pillow裁剪图片的示例:

from PIL import Image# 打开图片
image_path = 'path_to_your_image.jpg'  # 替换成你的图片路径
img = Image.open(image_path)# 定义裁剪区域 (左, 上, 右, 下)
crop_area = (100, 100, 300, 300)  # 根据需要调整这些值
# 裁剪图片
cropped_img = img.crop(crop_area)
# 显示裁剪后的图片
cropped_img.show()
# 保存裁剪后的图片
cropped_img.save('cropped_image.jpg')

使用OpenCV裁剪图片
OpenCV是另一个流行的图像处理库,常用于计算机视觉项目。以下是使用OpenCV裁剪图片的示例:

import cv2# 读取图片
image_path = 'path_to_your_image.jpg'  # 替换成你的图片路径
img = cv2.imread(image_path)# 定义裁剪区域 (y的开始和结束,x的开始和结束)
crop_area = (100, 300, 100, 300)  # 根据需要调整这些值# 裁剪图片
# 注意OpenCV中的图像格式是先行后列(即先高度(y)后宽度(x))
cropped_img = img[crop_area[0]:crop_area[1], crop_area[2]:crop_area[3]]# 显示裁剪后的图片
cv2.imshow('Cropped Image', cropped_img)
cv2.waitKey(0)  # 等待按键
cv2.destroyAllWindows()
# 保存裁剪后的图片
cv2.imwrite('cropped_image.jpg', cropped_img)

在这两种方法中,裁剪区域的选择至关重要。Pillow和OpenCV在指定裁剪区域时略有不同:

在Pillow中,裁剪区域是通过(left, upper, right, lower)来指定的,其中坐标原点在图片的左上角。
在OpenCV中,裁剪区域是通过行和列的索引来指定的,使用[y_start:y_end, x_start:x_end]的方式,其中坐标原点同样在图片的左上角,但需要注意的是,OpenCV使用的是(y, x)的顺序而非(x, y)。

这篇关于Pillow和OpenCV对图片进行高亮及裁剪处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1103820

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3