Python优化算法12——蝴蝶优化算法(BOA)

2024-08-24 20:28
文章标签 python 算法 优化 蝴蝶 boa

本文主要是介绍Python优化算法12——蝴蝶优化算法(BOA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

科研里面优化算法都用的多,尤其是各种动物园里面的智能仿生优化算法,但是目前都是MATLAB的代码多,python几乎没有什么包,这次把优化算法系列的代码都从底层手写开始。

需要看以前的优化算法文章可以参考:Python优化算法_阡之尘埃的博客-CSDN博客


算法介绍

蝴蝶优化算法(Butterfly Optimization Algorithm, BOA)是一种新型的自然启发式优化算法,其灵感来源于蝴蝶在自然界中的觅食行为和信息交流。BOA由Arora和Singh于2019年提出,旨在解决复杂的优化问题。

基本概念

蝴蝶优化算法模拟了蝴蝶通过释放信息素吸引其他蝴蝶,从而找到食物源的过程。其核心思想是利用蝴蝶的两个重要行为特征:感觉方式和移动方式。

算法流程

  1. 初始化:

  • 随机生成一组初始解,称为蝴蝶个体。

  • 每个蝴蝶的初始位置在搜索空间中随机分布。

  1. 适应度评估:

  • 计算每个蝴蝶个体的适应度,通常由优化问题的目标函数决定。

  1. 感觉方式和移动方式:

  • 蝴蝶利用信息素的强度来感知食物源的优劣。

  • 蝴蝶根据感觉到的信息素强度调整其移动策略,包括局部搜索和全局搜索。

  1. 位置更新:

  • 更新策略由信息素和适应度信息引导,确保算法能够在探索和开发之间取得平衡。

  • 蝴蝶个体更新位置以探索搜索空间。

  1. 信息共享和全局最优更新:

  • 蝴蝶个体之间进行信息共享,以提高全局搜索能力。

  • 根据适应度信息更新全局最优解。

  1. 迭代:

  • 重复上述过程,直至达到停止条件,如最大迭代次数或找到满意解。

蝴蝶优化算法具有简单性和有效性,尤其在处理高维和复杂优化问题时显示出优良的性能。由于BOA模拟了蝴蝶的自然行为,它可以在全局搜索和局部开发之间实现良好的平衡。这使得BOA在许多应用领域得到了广泛应用,如工程优化、机器学习参数调优和模式识别等。

正如其他群体智能算法,BOA的性能可能受到参数选择和问题特征的影响,因此在实际应用中常需根据具体问题进行适当调整和优化。

原理不多介绍了,直接看代码就好。


代码实现

导入包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
import seaborn as sns
import warnings
import copyplt.rcParams ['font.sans-serif'] ='SimHei'               #显示中文
plt.rcParams ['axes.unicode_minus']=False               #显示负号
warnings.filterwarnings('ignore')
plt.rcParams['font.family'] = 'DejaVu Sans'

只给代码不给使用案例就都是钓鱼的。我这里给出代码,也要给使用案例,先采用一些简单的优化算法常用的测试函数。由于都优化算法需要测试函数,我们先都定义好常见的23个函数:

'''F1函数'''
def F1(X):Results=np.sum(X**2)return Results'''F2函数'''
def F2(X):Results=np.sum(np.abs(X))+np.prod(np.abs(X))return Results'''F3函数'''
def F3(X):dim=X.shape[0]Results=0for i in range(dim):Results=Results+np.sum(X[0:i+1])**2return Results'''F4函数'''
def F4(X):Results=np.max(np.abs(X))return Results'''F5函数'''
def F5(X):dim=X.shape[0]Results=np.sum(100*(X[1:dim]-(X[0:dim-1]**2))**2+(X[0:dim-1]-1)**2)return Results'''F6函数'''
def F6(X):Results=np.sum(np.abs(X+0.5)**2)return Results'''F7函数'''
def F7(X):dim = X.shape[0]Temp = np.arange(1,dim+1,1)Results=np.sum(Temp*(X**4))+np.random.random()return Results'''F8函数'''
def F8(X):Results=np.sum(-X*np.sin(np.sqrt(np.abs(X))))return Results'''F9函数'''
def F9(X):dim=X.shape[0]Results=np.sum(X**2-10*np.cos(2*np.pi*X))+10*dimreturn Results'''F10函数'''
def F10(X):dim=X.shape[0]Results=-20*np.exp(-0.2*np.sqrt(np.sum(X**2)/dim))-np.exp(np.sum(np.cos(2*np.pi*X))/dim)+20+np.exp(1)return Results'''F11函数'''
def F11(X):dim=X.shape[0]Temp=np.arange(1,dim+1,+1)Results=np.sum(X**2)/4000-np.prod(np.cos(X/np.sqrt(Temp)))+1return Results'''F12函数'''
def Ufun(x,a,k,m):Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)return Resultsdef F12(X):dim=X.shape[0]Results=(np.pi/dim)*(10*((np.sin(np.pi*(1+(X[0]+1)/4)))**2)+\np.sum((((X[0:dim-1]+1)/4)**2)*(1+10*((np.sin(np.pi*(1+X[1:dim]+1)/4)))**2)+((X[dim-1]+1)/4)**2))+\np.sum(Ufun(X,10,100,4))return Results'''F13函数'''
def Ufun(x,a,k,m):Results=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<-a)return Resultsdef F13(X):dim=X.shape[0]Results=0.1*((np.sin(3*np.pi*X[0]))**2+np.sum((X[0:dim-1]-1)**2*(1+(np.sin(3*np.pi*X[1:dim]))**2))+\((X[dim-1]-1)**2)*(1+(np.sin(2*np.pi*X[dim-1]))**2))+np.sum(Ufun(X,5,100,4))return Results'''F14函数'''
def F14(X):aS=np.array([[-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32],\[-32,-32,-32,-32,-32,-16,-16,-16,-16,-16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32]])bS=np.zeros(25)for i in range(25):bS[i]=np.sum((X-aS[:,i])**6)Temp=np.arange(1,26,1)Results=(1/500+np.sum(1/(Temp+bS)))**(-1)return Results'''F15函数'''
def F15(X):aK=np.array([0.1957,0.1947,0.1735,0.16,0.0844,0.0627,0.0456,0.0342,0.0323,0.0235,0.0246])bK=np.array([0.25,0.5,1,2,4,6,8,10,12,14,16])bK=1/bKResults=np.sum((aK-((X[0]*(bK**2+X[1]*bK))/(bK**2+X[2]*bK+X[3])))**2)return Results'''F16函数'''
def F16(X):Results=4*(X[0]**2)-2.1*(X[0]**4)+(X[0]**6)/3+X[0]*X[1]-4*(X[1]**2)+4*(X[1]**4)return Results'''F17函数'''
def F17(X):Results=(X[1]-(X[0]**2)*5.1/(4*(np.pi**2))+(5/np.pi)*X[0]-6)**2+10*(1-1/(8*np.pi))*np.cos(X[0])+10return Results'''F18函数'''
def F18(X):Results=(1+(X[0]+X[1]+1)**2*(19-14*X[0]+3*(X[0]**2)-14*X[1]+6*X[0]*X[1]+3*X[1]**2))*\(30+(2*X[0]-3*X[1])**2*(18-32*X[0]+12*(X[0]**2)+48*X[1]-36*X[0]*X[1]+27*(X[1]**2)))return Results'''F19函数'''
def F19(X):aH=np.array([[3,10,30],[0.1,10,35],[3,10,30],[0.1,10,35]])cH=np.array([1,1.2,3,3.2])pH=np.array([[0.3689,0.117,0.2673],[0.4699,0.4387,0.747],[0.1091,0.8732,0.5547],[0.03815,0.5743,0.8828]])Results=0for i in range(4):Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))return Results'''F20函数'''
def F20(X):aH=np.array([[10,3,17,3.5,1.7,8],[0.05,10,17,0.1,8,14],[3,3.5,1.7,10,17,8],[17,8,0.05,10,0.1,14]])cH=np.array([1,1.2,3,3.2])pH=np.array([[0.1312,0.1696,0.5569,0.0124,0.8283,0.5886],[0.2329,0.4135,0.8307,0.3736,0.1004,0.9991],\[0.2348,0.1415,0.3522,0.2883,0.3047,0.6650],[0.4047,0.8828,0.8732,0.5743,0.1091,0.0381]])Results=0for i in range(4):Results=Results-cH[i]*np.exp(-(np.sum(aH[i,:]*((X-pH[i,:]))**2)))return Results'''F21函数'''
def F21(X):aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])Results=0for i in range(5):Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)return Results'''F22函数'''
def F22(X):aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])Results=0for i in range(7):Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)return Results'''F23函数'''
def F23(X):aSH=np.array([[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],\[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]])cSH=np.array([0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5])Results=0for i in range(10):Results=Results-(np.dot((X-aSH[i,:]),(X-aSH[i,:]).T)+cSH[i])**(-1)return Results

把他们的参数设置都用字典装起来

Funobject = {'F1': F1,'F2': F2,'F3': F3,'F4': F4,'F5': F5,'F6': F6,'F7': F7,'F8': F8,'F9': F9,'F10': F10,'F11': F11,'F12': F12,'F13': F13,'F14': F14,'F15': F15,'F16': F16,'F17': F17,'F18': F18,'F19': F19,'F20': F20,'F21': F21,'F22': F22,'F23': F23}
Funobject.keys()#维度,搜索区间下界,搜索区间上界,最优值
Fundim={'F1': [30,-100,100],'F2': [30,-10,10],'F3': [30,-100,100],'F4': [30,-10,10],'F5': [30,-30,30],'F6': [30,-100,100],'F7': [30,-1.28,1.28],'F8': [30,-500,500],'F9':[30,-5.12,5.12],'F10': [30,-32,32],'F11': [30,-600,600],'F12': [30,-50,50],'F13': [30,-50,50],'F14': [2,-65,65],'F15':[4,-5,5],'F16': [2,-5,5],'F17':[2,-5,5],'F18': [2,-2,2],'F19': [3,0,1],'F20': [6,0,1],'F21':[4,0,10],'F22': [4,0,10],'F23': [4,0,10]}

Fundim字典里面装的是对应这个函数的 ,维度,搜索区间下界,搜索区间上界。这样写好方便我们去遍历测试所有的函数。


蝴蝶优化算法

终于到了算法的主代码阶段了:

import numpy as np
import random
import copydef initialization(pop,ub,lb,dim):''' 种群初始化函数''''''pop:为种群数量dim:每个个体的维度ub:每个维度的变量上边界,维度为[dim,1]lb:为每个维度的变量下边界,维度为[dim,1]X:为输出的种群,维度[pop,dim]'''X = np.zeros([pop,dim]) #声明空间for i in range(pop):for j in range(dim):X[i,j]=(ub[j]-lb[j])*np.random.random()+lb[j] #生成[lb,ub]之间的随机数return Xdef BorderCheck(X,ub,lb,pop,dim):'''边界检查函数''''''dim:为每个个体数据的维度大小X:为输入数据,维度为[pop,dim]ub:为个体数据上边界,维度为[dim,1]lb:为个体数据下边界,维度为[dim,1]pop:为种群数量'''for i in range(pop):for j in range(dim):if X[i,j]>ub[j]:X[i,j] = ub[j]elif X[i,j]<lb[j]:X[i,j] = lb[j]return Xdef CaculateFitness(X,fun):'''计算种群的所有个体的适应度值'''pop = X.shape[0]fitness = np.zeros([pop, 1])for i in range(pop):fitness[i] = fun(X[i, :])return fitnessdef SortFitness(Fit):'''适应度值排序''''''输入为适应度值输出为排序后的适应度值,和索引'''fitness = np.sort(Fit, axis=0)index = np.argsort(Fit, axis=0)return fitness,indexdef SortPosition(X,index):'''根据适应度值对位置进行排序'''Xnew = np.zeros(X.shape)for i in range(X.shape[0]):Xnew[i,:] = X[index[i],:]return Xnewdef BOA(pop, dim, lb, ub, MaxIter, fun):'''蝴蝶优化算法''''''输入:pop:为种群数量dim:每个个体的维度ub:为个体上边界信息,维度为[1,dim]lb:为个体下边界信息,维度为[1,dim]fun:为适应度函数接口MaxIter:为最大迭代次数输出:GbestScore:最优解对应的适应度值GbestPositon:最优解Curve:迭代曲线'''p=0.8 #切换概率power_exponent=0.1  #功率指数asensory_modality=0.1 #感知形态cX = initialization(pop,ub,lb,dim)  # 初始化种群fitness = CaculateFitness(X, fun)  # 计算适应度值indexBest = np.argmin(fitness) #寻找最优适应度位置GbestScore = fitness[indexBest] #记录最优适应度值GbestPositon = np.zeros([1,dim])GbestPositon[0,:] = X[indexBest, :]X_new = copy.copy(X)Curve = np.zeros([MaxIter, 1])for t in range(MaxIter):      print("第"+str(t)+"次迭代")for i in range(pop):FP = sensory_modality*(fitness[i]**power_exponent) #刺激强度I的计算if random.random()<p: #全局搜索dis = random.random()*random.random()*GbestPositon - X[i,:]Temp = np.matrix(dis*FP)X_new[i,:] = X[i,:] + Temp[0,:]else:#局部搜索Temp = range(pop)JK = random.sample(Temp,pop) #随机选择个体dis=random.random()*random.random()*X[JK[0],:]-X[JK[1],:]Temp = np.matrix(dis*FP)X_new[i,:] = X[i,:] + Temp[0,:]for j in range(dim):if X_new[i,j] > ub[j]:X_new[i, j] = ub[j]if X_new[i,j] < lb[j]:X_new[i, j] = lb[j]#如果更优才更新if(fun(X_new[i,:])<fitness[i]):X[i,:] = copy.copy(X_new[i,:])fitness[i] = copy.copy(fun(X_new[i,:]))X = BorderCheck(X, ub, lb, pop, dim)  # 边界检测fitness = CaculateFitness(X, fun)  # 计算适应度值indexBest = np.argmin(fitness)if fitness[indexBest] <= GbestScore:  # 更新全局最优GbestScore = copy.copy(fitness[indexBest])GbestPositon[0,:] = copy.copy(X[indexBest, :])Curve[t] = GbestScorereturn GbestScore, GbestPositon, Curve

其实优化算法差不多都是这个流程,边界函数,适应度函数排序,然后寻优过程等等。

OPT_algorithms = {'BOA':BOA}
OPT_algorithms.keys()

简单使用

我们选择F4来测试,先看看F4函数三维的情况:

'''F4绘图函数'''
from mpl_toolkits.mplot3d import Axes3Ddef F4Plot():fig = plt.figure(1) #定义figureax = Axes3D(fig) #将figure变为3dx1=np.arange(-100,100,2) #定义x1,范围为[-100,100],间隔为2x2=np.arange(-100,100,2) #定义x2,范围为[-100,100],间隔为2X1,X2=np.meshgrid(x1,x2) #生成网格nSize = x1.shape[0]Z=np.zeros([nSize,nSize])for i in range(nSize):for j in range(nSize):X=[X1[i,j],X2[i,j]] #构造F4输入X=np.array(X) #将格式由list转换为arrayZ[i,j]=F4(X)  #计算F4的值#绘制3D曲面# rstride:行之间的跨度  cstride:列之间的跨度# rstride:行之间的跨度  cstride:列之间的跨度# cmap参数可以控制三维曲面的颜色组合ax.plot_surface(X1, X2, Z, rstride = 1, cstride = 1, cmap = plt.get_cmap('rainbow'))ax.contour(X1, X2, Z, zdir='z', offset=0)#绘制等高线ax.set_xlabel('X1')#x轴说明ax.set_ylabel('X2')#y轴说明ax.set_zlabel('Z')#z轴说明ax.set_title('F4_space')plt.show()F4Plot()

然后我们使用优化算法来寻优,自定义好所有的参数:

#设置参数
pop = 30 #种群数量
MaxIter = 200#最大迭代次数
dim = 30 #维度
lb = -100*np.ones([dim, 1]) #下边界
ub = 100*np.ones([dim, 1])#上边界
#选择适应度函数
fobj = F4
#原始算法
GbestScore,GbestPositon,Curve = BOA(pop,dim,lb,ub,MaxIter,fobj) 
#改进算法print('------原始算法结果--------------')
print('最优适应度值:',GbestScore)
print('最优解:',GbestPositon)

其实f4测试函数的最小值是零。所以可以看到这些结果不为零,不符合最优的情况的。所以这个算法真的不咋地。。。

自己使用解决实际问题的时候只需要替换fobj这个目标函数的参数就可以了。

这个函数就如同上面所有的自定义的测试函数一样,你只需要定义输入的x,经过1系列实际问题的计算逻辑,返回的适应度值就可以。

绘制适应度曲线

#绘制适应度曲线
plt.figure(figsize=(6,2.7),dpi=128)
plt.semilogy(Curve,'b-',linewidth=2)
plt.xlabel('Iteration',fontsize='medium')
plt.ylabel("Fitness",fontsize='medium')
plt.grid()
plt.title('BOA',fontsize='large')
plt.legend(['BOA'], loc='upper right')
plt.show()

注意,我这里是对数轴,所以它看起来会没有很收敛,这个函数的最小值是0,基本上100轮左右就是得到0左右。效果还不错。

其实看到这里差不多就可以去把这个优化算法的函数拿去使用了,演示结束了,但是由于我们这里还需要对它的性能做一些测试,我们会把它在所有的测试函数上都跑一遍,这个时间可能是有点久的。


所有函数都测试一下

functions = list(Funobject.keys())
algorithms = list(OPT_algorithms.keys())
columns = ['Mean', 'Std', 'Best', 'Worth']
index = pd.MultiIndex.from_product([functions, algorithms], names=['function_name', 'Algorithm_name'])
df_eval = pd.DataFrame(index=index, columns=columns)
df_eval.head()

索引和列名称都建好了,现在就是一个个跑,把值放进去就行了。

准备存储迭代图的数据框

df_Curve=pd.DataFrame(columns=index)
df_Curve

自定义训练函数

#定义训练函数
def train_fun(fobj_name=None,opt_algo_name=None, pop=30,MaxIter=200,Iter=30,show_fit=False):fundim=Fundim[fobj_name]  ; fobj=Funobject[fobj_name]dim=fundim[0]lb = fundim[1]*np.ones([dim, 1]) ; ub = fundim[2]*np.ones([dim, 1])opt_algo=OPT_algorithms[opt_algo_name]GbestScore_one=np.zeros([Iter])GbestPositon_one=np.zeros([Iter,dim])Curve_one=np.zeros([Iter,MaxIter])for i in range(Iter):GbestScore_one[i],GbestPositon_one[i,:],Curve_oneT =opt_algo(pop,dim,lb,ub,MaxIter,fobj)Curve_one[i,:]=Curve_oneT.Toneal_Mean=np.mean(GbestScore_one) #计算平均适应度值oneal_Std=np.std(GbestScore_one)#计算标准差oneal_Best=np.min(GbestScore_one)#计算最优值oneal_Worst=np.max(GbestScore_one)#计算最差值oneal_MeanCurve=Curve_one.mean(axis=0) #求平均适应度曲线#储存结果df_eval.loc[(fobj_name, opt_algo_name), :] = [oneal_Mean,oneal_Std, oneal_Best,oneal_Worst]df_Curve.loc[:,(fobj_name,opt_algo_name)]=oneal_MeanCurve#df_Curve[df_Curve.columns[(fobj_name,opt_algo_name)]] = oneal_MeanCurveif show_fit:print(f'{fobj_name}函数的{opt_algo_name}算法的平均适应度值是{oneal_Mean},标准差{oneal_Std},最优值{oneal_Best},最差值{oneal_Worst}')

训练测试

#设置参数
pop = 30#种群数量
MaxIter = 100 #代次数
Iter = 30 #运行次数

计算,遍历所有的测试函数

#所有函数,所有算法全部一次性计算
for fobj_name in list(Funobject.keys()):for opt_algo_name in OPT_algorithms.keys():try:train_fun(fobj_name=fobj_name,opt_algo_name=opt_algo_name, pop=pop,MaxIter=MaxIter,Iter=Iter)print(f'{fobj_name}的{opt_algo_name}算法完成')except Exception as e: # 使用 except 来捕获错误print(f'{fobj_name}的{opt_algo_name}算法报错了:{e}') # 打印错误信息

 查看计算出来的评价指标

df_eval

由于这里大部分的测试函数最优值都是零,我们可以看到。BOA在很多函数上都接近于收敛的,但是没有到0,说明它的效果一般般,还可以。

画出迭代图

colors = ['darkorange', 'limegreen', 'lightpink', 'deeppink', 'red', 'cornflowerblue', 'grey']
markers = ['^', 'D', 'o', '*', 'X', 'p', 's']def plot_log_line(df_plot, fobj_name, step=10, save=False):plt.figure(figsize=(6, 3), dpi=128)for column, color, marker in zip(df_plot.columns, colors, markers):plt.semilogy(df_plot.index[::step], df_plot[column][::step].to_numpy(), color=color, marker=marker, label=column, markersize=4, alpha=0.7)plt.xlabel('Iterations')plt.ylabel('f')plt.legend(loc='best', fontsize=8)if save:plt.savefig(f'./图片/{fobj_name}不同迭代图.png', bbox_inches='tight')plt.show()# 使用示例
# plot_log_line(your_dataframe, 'example_plot')
for fobj_name in df_Curve.columns.get_level_values(0).unique():df1=df_Curve[fobj_name]print(f'{fobj_name}的不同算法效果对比:')plot_log_line(df1,fobj_name,5,False)   #保存图片-True

这里可以打印它在每一个测试函数上的迭代图,可以自己具体仔细观察。。。当然观察后这个算法性能是还是可以的。 虽然不如我前面的SMA,SSA,CS等其他的优化算法。


后面还有更多的优化算法,等我有空都写完。其实文章最核心的还是优化算法的函数那一块儿,别的代码都是用来测试它的性能的

当然需要本次案例的全部代码文件的还是可以参考:蝴蝶优化算法

创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)

这篇关于Python优化算法12——蝴蝶优化算法(BOA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103517

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的