本文主要是介绍Light-Head R-CNN解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
最近对检测很有兴趣哎,这些天写了好几个相关博客了,下一步准备写SSD和YOLO了,近段时间要把检测吃透
Light-Head R-CNN: In Defense of Two-Stage Object Detector,名字很有趣,守护two stage检测器的尊严。
Motivation
region-free的方法如YOLO,SSD,速度是很快,但是总体来说精度上还是不如两段的region-based系列的Faster rcnn(及加速版R-FCN),那我们想要精度最高速度最快,就有两个做法了,提升region-free系列的精度(这个等我再二刷SSD后再想想有木有什么思路),另一个就是提升region-based系列的速度了,本文就是后者。
首先Faster rcnn为什么还是很慢,在我上一篇博客R-FCN解读中已经提过,它的第二阶段每个proposal是不共享计算的,fc大量的参数和计算严重拖了速度(其实faster rcnn+res101已经做了努力,在res5c有个global pool到2014*1*1,不然第二阶段第一个fc参数参数更多。kaiming论文是C5作为fc6 fc7的,C5后面也依然有global pool,最后分类肯定要有一个全连接的,global pool之后参数也少很多(2048*1*1*C,不然就是2048*7*7*C))。而R-FCN就在着力于解决这个第二阶段的问题,通过生成一个k^2(C+1) channel的score map和PSRoIpooling可以去掉第二阶段的隐层fc,加速了很多。
但是R-FCN生成的score map是和C相关的,在MSCOCO上有81类需要生成7*7*81=3969个channel的score map,这个是耗时耗内存的。所以本文想生成一个thin 的feature map,这样可以显著加速还可以腾出“时间”在后面的rcnn部分做点文章提升精度。
Approach
在Resnet101 res5c后利用大的可分离卷积,生成(α * p * p)channel的feature map,α本文取10,p和其他框架一致取7,这个最终只有10*7*7=490,而且与类别数C无关,大大减少了计算量,第二阶段的rcnn 子网络,本文为了提升精度,相比R-FCN多了一个隐层fc,这是thin feature map为它省来的计算空间,所以速度依然很快。
Basic feature extractor.
两种设置,一种是ResNet101,设为L,一种是自己设计的简单的Xception网络,设为S
thin feature map
参考论文Large Kernel Matters – Improve Semantic Segmentation by Global Convolutional Network
本文设置k=15, Cmid = 64 for setting S,and Cmid = 256 for setting L
Ablation experiment
thin feature map
首先说明直接把feature map变为thin feature map有什么影响啊?
做法就是直接把R-FCN得到的feature map用1*1的卷积降维到490,然后由于channel减少和类别树无关了,不能像R-FCN直接vote了(R-FCN vote后得到(C+1)*1*1,然后可以直接softmax,而本文vote的话得到10*1*1,不能直接softmax,所以加个10*1*1*C的全连接分类,加个10*1*1*4*C的全连接回归,图中那个fc应该是cls和loc都有的)。B1是直接复现的R-FCN,B2是改了点配置(1, 图片尺度和anchor scale增多 2, 回归的loss比重扩大1倍 3, 只选前256个loss大的样本进行反向传播)
从表中可以看到,channel变少了那么多后,精度并没有损失太多,把PSRoIpooing换成roipooling情况是一样的,甚至有些提升(因为PSRoIpooing后channel变成10channel了,而RoIPooling后channel还是490,参数多了些精度有些许提升)。而且这地方channel变少后集成FPN很方便,因为fpn会在很多level的feature上通过3*3卷积生成这个(C+1)*k*k channel的feature map,十分耗内存和计算,详见我的另一篇博客FPN解读
large separable convolution
把粗暴的1*1降维换成Large separable convolution,k=15, Cmid = 256,其他和R-FCN一样
R-CNN subnet
我们在R-CNN subnet中多加了一个2048channel的隐层fc(无dropout,注意区别于前面的实验是直接加个10*1*1*C的全连接分类(对应表格第3行的数据),这里要有个10*1*1*2048的隐层fc,然后再有个2048*C的全连接分类,loc类似),这个隐层fc是2048和1024 channel都差不多,参数变化很少,精度速度影响也不大。
从表上看到最终提升了2个点左右,而且注意由于用了thin feature map,速度是比它们快的。
High Accuracy and High Speed
本文把PSRoIpooling改成和RoIalign那样的插值,然后加上和其他model的同样配置和数据增强,精度是可以达到state-of-art的
然后速度方面,把base model换成自己设计的”S”,速度也是可以秒掉SSD、YOLO等region-free以追求速度为主的model,同时精度和它们相当
下一步是不是要精度达到region-based,速度达到region-free呢,期待中(实力暂时不够,只能期待了)
部分代码
# light head
# large kernel
conv_new_1 = mx.sym.Convolution(data=relu1, kernel=(15, 1), pad=(7, 0), num_filter=256, name="conv_new_1", lr_mult=3.0)
relu_new_1 = mx.sym.Activation(data=conv_new_1, act_type='relu', name='relu1')
conv_new_2 = mx.sym.Convolution(data=relu_new_1, kernel=(1, 15), pad=(0, 7), num_filter=10*7*7, name="conv_new_2", lr_mult=3.0)
relu_new_2 = mx.sym.Activation(data=conv_new_2, act_type='relu', name='relu2')
conv_new_3 = mx.sym.Convolution(data=relu1, kernel=(1, 15), pad=(0, 7), num_filter=256, name="conv_new_3", lr_mult=3.0)
relu_new_3 = mx.sym.Activation(data=conv_new_3, act_type='relu', name='relu3')
conv_new_4 = mx.sym.Convolution(data=relu_new_3, kernel=(15, 1), pad=(7, 0), num_filter=10*7*7, name="conv_new_4", lr_mult=3.0)
relu_new_4 = mx.sym.Activation(data=conv_new_4, act_type='relu', name='relu4')
light_head = mx.symbol.broadcast_add(name='light_head', *[relu_new_2, relu_new_4])
# PSROIPooling
roi_pool = mx.contrib.sym.PSROIPooling(name='roi_pool', data=light_head, rois=rois, group_size=7, pooled_size=7, output_dim=10, spatial_scale=0.0625)
# 隐层fc
fc_new_1 = mx.symbol.FullyConnected(name='fc_new_1', data=roi_pool, num_hidden=2048)
fc_new_1_relu = mx.sym.Activation(data=fc_new_1, act_type='relu', name='fc_new_1_relu')
# 分类和回归
cls_score = mx.symbol.FullyConnected(name='cls_score', data=fc_new_1_relu, num_hidden=num_classes)
bbox_pred = mx.symbol.FullyConnected(name='bbox_pred', data=fc_new_1_relu, num_hidden=num_reg_classes * 4)
参考:
terrychenism/Deformable-ConvNets
这篇关于Light-Head R-CNN解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!