第一章 python数据结构和算法--1.4 查找最大或最小的 N 个元素 问题

本文主要是介绍第一章 python数据结构和算法--1.4 查找最大或最小的 N 个元素 问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题

怎样从一个集合中获得最大或者最小的 N 个元素列表?

解决方案

heapq 模块有两个函数:nlargest() 和 nsmallest() 可以完美解决这个问题。

import heapq
nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
print(heapq.nlargest(3, nums)) # Prints [42, 37, 23]
print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2]
[42, 37, 23]
[-4, 1, 2]

两个函数都能接受一个关键字参数,用于更复杂的数据结构中:

portfolio = [{'name': 'IBM', 'shares': 100, 'price': 91.1},{'name': 'AAPL', 'shares': 50, 'price': 543.22},{'name': 'FB', 'shares': 200, 'price': 21.09},{'name': 'HPQ', 'shares': 35, 'price': 31.75},{'name': 'YHOO', 'shares': 45, 'price': 16.35},{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
cheap
[{'name': 'YHOO', 'shares': 45, 'price': 16.35},{'name': 'FB', 'shares': 200, 'price': 21.09},{'name': 'HPQ', 'shares': 35, 'price': 31.75}]
expensive
[{'name': 'AAPL', 'shares': 50, 'price': 543.22},{'name': 'ACME', 'shares': 75, 'price': 115.65},{'name': 'IBM', 'shares': 100, 'price': 91.1}]

如果你想在一个集合中查找最小或最大的 N 个元素,并且 N 小于集合元素数量,那么这些函数提供了很好的性能。 因为在底层实现里面,首先会先将集合数据进行堆排序后放入一个列表中:

nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
heap = list(nums)
heapq.heapify(heap)
heap
[-4, 2, 1, 23, 7, 2, 18, 23, 42, 37, 8]

堆数据结构最重要的特征是 heap[0] 永远是最小的元素。并且剩余的元素可以很容易的通过调用 heapq.heappop() 方法得到, 该方法会先将第一个元素弹出来,然后用下一个最小的元素来取代被弹出元素(这种操作时间复杂度仅仅是 O(log N),N 是堆大小)。 比如,如果想要查找最小的 3 个元素,你可以这样做:

heapq.heappop(heap)
-4
heapq.heappop(heap)
1
heapq.heappop(heap)
2

当要查找的元素个数相对比较小的时候,函数 nlargest() 和 nsmallest() 是很合适的。 如果你仅仅想查找唯一的最小或最大(N=1)的元素的话,那么使用 min() 和 max() 函数会更快些。 类似的,如果 N 的大小和集合大小接近的时候,通常先排序这个集合然后再使用切片操作会更快点 ( sorted(items)[:N] 或者是 sorted(items)[-N:] )。 需要在正确场合使用函数 nlargest() 和 nsmallest() 才能发挥它们的优势 (如果 N 快接近集合大小了,那么使用排序操作会更好些)。

尽管你没有必要一定使用这里的方法,但是堆数据结构的实现是一个很有趣并且值得你深入学习的东西。 基本上只要是数据结构和算法书籍里面都会有提及到。 heapq 模块的官方文档里面也详细的介绍了堆数据结构底层的实现细节。

这篇关于第一章 python数据结构和算法--1.4 查找最大或最小的 N 个元素 问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103160

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调